
io_uring in Android OTA
Akilesh Kailash (akailash@google.com)

2

Agenda

● Overview of Android OTA and Virtual A/B

● Snapshot-merge performance with io_uring

● Overview of dm-user in Virtual A/B

● ublk - userspace block driver and integration with Android OTA

3

Virtual A/B

● Delta size depends on the update size
(copy-on-write) and can be computed

 in advance
● Space for deltas is dynamically

 allocated during an update
 (use free space in super and files in /data)

4

Android Copy on Write (COW) format

○ Encodes four block-level operations:

○ ZERO: The destination block is zeroed.

○ COPY: The destination block is copied from
a pre-existing block.

○ REPLACE: The destination block is replaced with new data, gz-compressed into the COW.

○ XOR: The destination block is an XOR from
a pre-existing block with the changed content stored in COW.

5

 Snapshot Merge during OTA

OTA operation:

● Operation: COPY

○ BLOCK X -> BLOCK Y

■ Read BLOCK X to buffer (syscall)

■ Write BLOCK Y from buffer (syscall)

■ Fsync (syscall)

● An Incremental OTA of ~200MB has ~150k
COPY operations on SYSTEM partition and
~350k COPY operations on PRODUCT partition

● Total syscall = 150k + 350k = 500k COPY ops * 3
= 1.5M syscalls

● Potentially another 500k+ when SYSTEM_EXT,
VENDOR partitions are considered

6

 Snapshot-merge COPY operation

● ~40% CPU cycles spent in
READ syscall - Reading the
block device

● 8% CPU cycles spent in
WRITE syscall - Writing to
block device

● 6% CPU cycles in FSYNC

Data from Pixel 6 running Android T

7

io_uring during snapshot-merge COPY operation

● ~4% CPU cycles
spent in READ -
Reading the block
device

● ~7% CPU cycles
spent in WRITE +
FSYNC

Data from Pixel 6 running Android T

8

 Snapshot Merge time

● With io_uring, snapshot merge cuts down ~40%.
○ On Pixel 6 running Android T, snapshot merge for an incremental OTA completes

~60-75 seconds with io_uring.
○ Merge time varies based on OTA configuration. Without io_uring, merge time varies

between 120-180 seconds.

● Cut down on CPU cycles and number of threads to merge.

● Faster snapshot merge is important as partitions are mounted off dm-user
○ I/O from root filesystem will have to be served from user-space daemon until merge is

completed.

9

 dm-user kernel driver in Virtual A/B

● dm-user - Kernel module, like
FUSE but userspace block
device

● Out of tree patch maintained on
4.14, 4.19, 5.4, 5.10, 5.15+
android kernels.

● ~10% CPU cycles spent when
dm-user is used as a loop-back
device.

Data from Pixel 6 running Android T

10

ublk - userspace block driver

● ublk - Userspace block driver available upstream from 5.20

● It is io_uring based: i/o request is delivered to userspace via the newly added io_uring command
(IORING_OP_URING_CMD).

● Supports multiple queues.

● Mmap ublk daemon VM space for re-mapping block I/O request pages.

● Libublksrv: userspace library available to integrate new ublk targets.

11

 ublk - Integration with Android OTA

● Add new ublk-android target - A
variation of loop target. Handle
I/O request from ublk-server.

● ublk-loop target prototype
completed on Pixel 6 running
android-mainline 6.0-rc1.

● Some changes required in ublk
server to support android specific
target.

● No more out of tree kernel patch.

● Perf improvements - io_uring
instance can be used for loop
back during COPY ota
operations.

12

 ublk - Integration with Android OTA.
Questions ?

● Additional dm-linear device-mapper target
is required as I/O needs to be suspended
during init first stage and selinux transition

● Post snapshot-merge, ublk driver has to be
removed

● Device mapper has the suspend/resume
 support

● Extend ublk driver to support it ?

● ublkserver needs trivial changes
○ No c++20 support in Android

13

Thank you

