PCIe Endpoint Subsystem Open Items Discussion

Manivannan Sadhasivam
Senior Kernel Engineer
Qualcomm Landing team, Linaro
Topics

● Reworking PCIe Endpoint notification
● Devicetree Integration
Reworking PCIe Endpoint notification

- PCIe Endpoint framework uses “atomic notifiers” for passing the events from EPC (Endpoint Controller) to EPF (Endpoint Function)
 - CORE_INIT - Signalling the initialization of EPC
 - LINK_UP - PCIe Link Up event

- This suffers from several issues:
 - The EPF notification function should be in atomic context
 - Present EPF drivers in mainline suffers from “Sleeping in atomic” bug
 - Notifiers are not a good candidate for passing the events if there is a fixed interface between sender and receiver
 - Suggested by Rob Herring
Reworking PCIe Endpoint notification

- **Proposal**
 - A simple callback mechanism for passing the events from EPC to EPF
 - EPF drivers should populate the callbacks in “epf->event_ops” structure
 - core_init()
 - link_up()
 - EPC core will just execute the callbacks for each EPF driver associated with the EPC on the occurrence of the event

```c
mutex_lock(&epc->list_lock);
list_for_each_entry(epf, &epc->pci_epf, list) {
    mutex_lock(&epf->lock);
    if (epf->event_ops->core_init)
        efp->event_ops->core_init(epf);
    mutex_unlock(&epf->lock);
}
mutex_unlock(&epc->list_lock);
```
Devicetree Integration

- Devicetree is currently not integrated with EPF drivers since most of the Endpoint functions are software implementations.
- ConfigFS is currently used for specifying function configurations.
- But there are Endpoint functions that have relevant hardware blocks. For example, MHI (Modem Host Interface) on Qualcomm chipsets.

MHI
- MHI is a Qualcomm specific protocol that uses PCI as the physical layer for transferring data packets between PCI host and endpoint.
- MHI has a hardware implementation in Qualcomm chipsets supporting PCI Endpoint mode.
- Currently, PCI Endpoint Controller (EPC) devicetree node is used for fetching MHI specific data like BAR region and interrupt.
Devicetree Integration

- Proposal
 - A devicetree node for MHI function
 - Child node of PCI Endpoint Controller (EPC) node
 - EPF device will be created for each function and later bound with EPF driver
 - Properties
 - reg
 - function-name
 - bar-regions
 - Interrupts
 - Due to the parent child relationship between EPC and EPF in devicetree, link can be established without ConfigFS intervention.
Devicetree Integration

Devicetree Binding

```c
soc {
    ...
    pcle1_ep: pcle-ep@1c08000 {
        compatible = "qcom,sm8450-pcie-ep";
        #address-cells = <1>;
        #size-cells = <0>;
        ...
        func@0 {
            reg = <0>;
            function-name = "sdx55-mhi";
            bar-regions = /bits/ 64 <0x01c0b000 0x1000>;
            interrupts = <GIC_SPI 440 IRQ_TYPE_LEVEL_HIGH>;
        }
    }
};
```
Thank you

Feedback: Email: manivannan.sadhasivam@linaro.org
IRC: mani_s

Enquiries: contact@linaro.org