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The kernel doesn’t support doing 

PCI P2P inside a Virtual Machine
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Problem Statement

To allow PCI P2P, the kernel needs to verify that two peers can perform 

P2P

This is done by calling the following function:

static enum pci_p2pdma_map_type

calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client, int *dist, bool verbose)
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P2P Configurations

Behind the same switch with ACS p2p-forwarding disabled

Behind the same switch with ACS p2p-forwarding enabled AND root complex is white-listed
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PCI information for P2P

- The function requires the following information:

• PCIe topology

• ACS configuration of the relevant PCIe switches 

• PCI root complex type / CPU type

- The PCI information is not exposed inside the Guest OS

• Qemu emulates only old root ports

• The user defines the PCI topology inside the guest, without any correlation to the real PCI topology

• ACS configuration of PCI switches is not exposed
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Proposal 1 – Replicate Topology

-device pcie-root-port-p2p,id=root_port1,chassis=x,slot=y,host=0000:30:00.0

-device pcie-switch-p2p,id=upstream_port1,bus=root_port1,host=0000:31:00.0

-device pcie-switch-p2p-downstream,id=downstream_port1,bus=upstream_port1,chassis=x1,slot=y1,host=0000:32:00.0

-device pcie-switch-p2p-downstream,id=downstream_port2,bus=upstream_port1,chassis=x1,slot=y1,host=0000:32:01.0

-device vfio-pci,host=0000:33:00.0,id=hostdev0,bus=downstream_port1

-device vfio-pci,host=0000:34:00.0,id=hostdev1,bus=downstream_port2
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Proposal 1 (cont’)

• Emulate P2P PCIe root port and P2P Generic PCIe switch

• Replicate ACS configuration and expose p2p root port type (for whitelist check)

• Add the new P2P PCIe root port vendor and device id to p2pdma whitelist

• Export p2pdma whitelist to uAPI header file

• Pros:

• Minimal changes to kernel code

• Cons:

• Requires major modification of existing VM configurations

• Exposes host PCIe topology to the Guest
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Proposal 2 - Hypercall

• Add a hypercall that will get the guest BDF of two peers, calculate and return the map type and distance.

• Mapping between KVM and vfio-pci devices can be identified inside the kernel

• It will be called by calc_map_type_and_dist()

• Decision to call hypercall can be done based on kvm_para_available()

• Can we use root port type instead ? (if its red-hat it’s virtualized)

• To match guest and host BDF, the kernel vfio-pci object will hold its guest BDF. This requires a new vfio-pci

ioctl that QEMU will use.

• Pros:

• Zero changes to existing VM configurations

• Cons:

• A new hypercall to maintain
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Proposal 3 - VIRTIO

• Instead of a hypercall, define a new VIRTIO device for the guest to query the host. The VIRTIO device 

will only export a kernel API, no need for uAPI.

• The kAPI will be called by calc_map_type_and_dist()

• Decision to call API can be done in case VIRTIO device exists (or kvm_para_available() as in hypercall)

• Expose calc_map_type_and_dist() as a uAPI for QEMU

• Pros (vs. hypercall):

• Straight-forward kernel changes

• Cons (vs. hypercall):

• Requires minor modification of existing VM configurations


