
PCI P2P inside VM

Oded Gabbay / ogabbay@kernel.org



2

The kernel doesn’t support doing 

PCI P2P inside a Virtual Machine



3

Problem Statement

To allow PCI P2P, the kernel needs to verify that two peers can perform 

P2P

This is done by calling the following function:

static enum pci_p2pdma_map_type

calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client, int *dist, bool verbose)



4

CPU

Memory

Ethernet

Root Complex

Virtual Machine owns 

entire Host resources

RoCE

NIC

PCIe Switch

Comp. 

Accel
Comp. 

Accel

RoCE

NIC

PCIe Switch

Comp. 

Accel

Comp. 

Accel

RoCE

NIC

PCIe Switch

Comp. 

Accel
Comp. 

Accel

RoCE

NIC

PCIe Switch

Comp. 

Accel

Comp. 

Accel

P2P Configurations

Behind the same switch with ACS p2p-forwarding disabled

Behind the same switch with ACS p2p-forwarding enabled AND root complex is white-listed



5

PCI information for P2P

- The function requires the following information:

• PCIe topology

• ACS configuration of the relevant PCIe switches 

• PCI root complex type / CPU type

- The PCI information is not exposed inside the Guest OS

• Qemu emulates only old root ports

• The user defines the PCI topology inside the guest, without any correlation to the real PCI topology

• ACS configuration of PCI switches is not exposed



6

Proposal 1 – Replicate Topology

-device pcie-root-port-p2p,id=root_port1,chassis=x,slot=y,host=0000:30:00.0

-device pcie-switch-p2p,id=upstream_port1,bus=root_port1,host=0000:31:00.0

-device pcie-switch-p2p-downstream,id=downstream_port1,bus=upstream_port1,chassis=x1,slot=y1,host=0000:32:00.0

-device pcie-switch-p2p-downstream,id=downstream_port2,bus=upstream_port1,chassis=x1,slot=y1,host=0000:32:01.0

-device vfio-pci,host=0000:33:00.0,id=hostdev0,bus=downstream_port1

-device vfio-pci,host=0000:34:00.0,id=hostdev1,bus=downstream_port2

CPU

Memory

Ethernet

Root Complex

RoCE

NIC

PCIe Switch

Comp. 

Accel

34:00.033:00.0

31:00.0

32:01.0

30:00.0

32:00.0



7

Proposal 1 (cont’)

• Emulate P2P PCIe root port and P2P Generic PCIe switch

• Replicate ACS configuration and expose p2p root port type (for whitelist check)

• Add the new P2P PCIe root port vendor and device id to p2pdma whitelist

• Export p2pdma whitelist to uAPI header file

• Pros:

• Minimal changes to kernel code

• Cons:

• Requires major modification of existing VM configurations

• Exposes host PCIe topology to the Guest



8

Proposal 2 - Hypercall

• Add a hypercall that will get the guest BDF of two peers, calculate and return the map type and distance.

• Mapping between KVM and vfio-pci devices can be identified inside the kernel

• It will be called by calc_map_type_and_dist()

• Decision to call hypercall can be done based on kvm_para_available()

• Can we use root port type instead ? (if its red-hat it’s virtualized)

• To match guest and host BDF, the kernel vfio-pci object will hold its guest BDF. This requires a new vfio-pci

ioctl that QEMU will use.

• Pros:

• Zero changes to existing VM configurations

• Cons:

• A new hypercall to maintain



9

Proposal 3 - VIRTIO

• Instead of a hypercall, define a new VIRTIO device for the guest to query the host. The VIRTIO device 

will only export a kernel API, no need for uAPI.

• The kAPI will be called by calc_map_type_and_dist()

• Decision to call API can be done in case VIRTIO device exists (or kvm_para_available() as in hypercall)

• Expose calc_map_type_and_dist() as a uAPI for QEMU

• Pros (vs. hypercall):

• Straight-forward kernel changes

• Cons (vs. hypercall):

• Requires minor modification of existing VM configurations


