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UNMAPPED PRIVATE MEMORY

• Proposed kernel infrastructure to back confidential guests with pages that are not 
mappable/accessible by userspace

• Generally synonymous with Chao Peng’s private memslot patchset:

• “KVM: mm: fd-based approach for supporting KVM guest private memory”

• Proposed by a number of a developers for various reasons, but the most prevalent driver is 
TDX support, where writes to private guest memory by userspace result in #MC

• Also being evaluated for use with SEV-SNP, pKVM, and possibly others

• Description/topics here are somewhat SEV-SNP centric, but can hopefully still be extrapolated 
to some of these other use cases
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UPM - PRIVATE MEMSLOTS

• Currently both shared/private memory 
are backed by normal memslots

• private memory can be mapped into 
userspace just like normal memory

• malloc() / mmap() 

• Adds new private memslot struct

• Provides both shared/private memory

• private memory allocated separately via 
memfd

• memfd uses MFD_INACCESSIBLE

• Not readable/writable

• Can’t be mmap()’d into userspace

• KVM MMU uses an xarray to determine 
whether to map guest memory from 
shared/private pool

Guest A

GVA GPA

0000h

1000h 2000h

2000h

3000h 3000h

...

Slot A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h 7000h

#NPF: GPA->HPA lookup
(normal memslot)
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UPM – PRIVATE MEMSLOTS

• Currently both shared/private memory 
are backed by normal memslots

• private memory can be mapped into 
userspace just like normal memory

• malloc() / mmap()

• Adds new private memslot struct

• Provides both shared/private memory

• private memory allocated separately via 
memfd

• memfd uses MFD_INACCESSIBLE

• Not readable/writable

• Can’t be mmap()’d into userspace

• KVM MMU uses an xarray to determine 
whether to map guest memory from 
shared/private pool

Guest A

GVA GPA

0000h

1000h 2000h

2000h

3000h 3000h

...

Slot A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

…

Slot A (private)

GPA offset

0000h 0000h

1000h 1000h

2000h 2000h

3000h 3000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h

Mem FD

offset HPA

0000h

1000h

2000h

3000h 8000h

…

Private?

GPA

0000h

1000h

2000h

3000h

…

#NPF: GPA->HPA lookup
(private memslot)
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UPM – IMPLICIT CONVERSIONS

• KVM MMU uses an xarray to determine 
whether to map guest memory from 
shared/private pool
• xarray controlled purely by userspace

• KVM_MEM_ENCRYPT_REG_REGION

• KVM_MEM_ENCRYPT_UNREG_REGION

• Implicit conversion
• if C-bit does not match xarray state:

• KVM_EXIT_MEMORY_FAULT

• alloc/dealloc private/shared memory

• VMM converts using REG/UNREG ioctl

• Explicit conversion
• GHCB page-state change request 

forwarded to userspace
• KVM_EXIT_VMGEXIT

• alloc/dealloc private/shared memory

• VMM converts using REG/UNREG ioctl

Guest A

GVA GPA

0000h

1000h

2000h

3000h 3000h

...

VMM A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

4000h 5000h

…

VMM A (private)

GPA offset

0000h 0000h

1000h 1000h

2000h 2000h

3000h 3000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h

Mem FD

offset HPA

0000h

1000h

2000h

3000h 8000h

…

Private?

GPA

0000h

1000h

2000h

3000h

…

#NPF: GPA->HPA lookup/conversion
(private memslot)

allocate/deallocate

KVM_EXIT_MEMORY_FAULT

KVM_MEM_ENCRYPT_REG_REGION
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UPM – EXPLICIT CONVERSIONS

• KVM MMU uses an xarray to determine 
whether to map guest memory from 
shared/private pool
• xarray controlled purely by userspace

• KVM_MEM_ENCRYPT_REG_REGION

• KVM_MEM_ENCRYPT_UNREG_REGION

• Implicit conversion
• if C-bit does not match xarray state:

• KVM_EXIT_MEMORY_FAULT

• alloc/dealloc private/shared memory

• VMM converts using REG/UNREG ioctl

• Explicit conversion
• GHCB page-state change request 

forwarded to userspace
• KVM_EXIT_VMGEXIT

• alloc/dealloc private/shared memory

• VMM converts using REG/UNREG ioctl

Guest A

GVA GPA

0000h

1000h

2000h

3000h 3000h

...

VMM A (shared)

GPA HVA

0000h 1000h

1000h 2000h

2000h 3000h

3000h 4000h

4000h 5000h

…

VMM A (private)

GPA offset

0000h 0000h

1000h 1000h

2000h 2000h

3000h 3000h

…

VMM Page Table

HVA HPA

0000h

1000h

2000h

3000h 9000h

4000h

Mem FD

offset HPA

0000h

1000h

2000h

3000h 8000h

…

Private?

GPA

0000h

1000h

2000h

3000h

…

#NPF: GPA->HPA lookup/conversion
(private memslot)

allocate/deallocate

KVM_EXIT_VMGEXIT

KVM_MEM_ENCRYPT_REG_REGION
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UPM: PROS/CONS

• Pros:

• Shared infrastructure for managing private guest pages

• Cross-platform: SNP / TDX, potentially cross-architecture

• Less chance of guest disruption/exploitation from accessing private memory in userspace

• Lazy-pinning support

• Cons:

• More management complexity in VMMs:

• Allocating/de-allocating private memory

• Potential for 2X memory usage

• Lazily-deallocate for performance?

• Immediately deallocate to reduce memory usage?

• Handling of new private memslot structure

• Memory pinning/affinity considerations

• Performance

• More exits to userspace, more context switches
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HANDLING FOR KERNEL DIRECTMAP

• Writes via 2M directmap mapping will generate RMP violation if it overlaps with private page

• 3 potential approaches:

• Leave private page mapped, but split the directmap

• We have set_memory_4k() for this, but no set_memory_2m() currently (solvable?)

• Remove private page from directmap

• Basically ends up splitting unless conversion covers whole 2M range

• Easier to restore 2M mapping (but again, only if conversion covers whole 2M range)

• Always allocate from private pool with 2M pages

• No chance for other threads to write into range

• No splitting needed

• Feasible?

• Should UPM handle this at all? If so, which approach?
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GUARDING HOST ACCESSES TO SHARED PAGES AGAINST 
SHARED->PRIVATE CONVERSIONS

• Host may be accessing shared pages for a number of difference purposes:
• kvmclock

• virtio buffers

• GHCB pages

• Accesses may be via kernel mappings (e.g. kvm_vcpu_map())

• Ideally:
• A) If guest erroneously/maliciously flips the page to private, the host should be made aware of this

• B) If host erroneously/maliciously writes to a page that is now private, the guest should be made aware of this

• SNP (non-UPM) will likely address this situation by using flipping the page back to shared state in the RMP 
table, this will result in the guest getting a #VC exception if the host did this in error. Provides ideal handling for 
both A) and B)

• UPM: Separate physical memory pools for shared and private:
• Case A): helps avoid host crash, but host may not notice unless there’s some additional synchronization/invalidation 

mechanism (not UPM-specific issue, but still an argument in favor of platform-specific handling)

• Case B): guest won’t know host is writing updates to a stale page and silently break, not necessarily corrupting guest 
memory, but similar end result

• Also, some archs may not be able to use separate memory pools for shared/private

• Keep this handling platform-specific, or can UPM improve on this somehow?
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SCATTER/GATHER SUPPORT FOR 
KVM_EXIT_MEMORY_FAULT

• SNP does explicit shared/private conversions via GHCB requests

• Current UPM implementation forwards these to userspace via KVM_EXIT_VMGEXIT

• Multiple KVM_MEM_ENCRYPT_REG_REGION handled “atomically” by VMM from KVM perspective

• Alternative:

• Forward these to userspace as KVM_EXIT_MEMORY_FAULT, as with implicit conversions

• Only handles 1 range at a time, KVM needs to generate multiple KVM_EXIT_MEMORY_FAULTs 
before completing GHCB  request

• SG list support for KVM_EXIT_MEMORY_FAULT might improve on this

• Better performance

• Less complexity in KVM GHCB request handling
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