
How to introduce KUnit to physical device drivers?

Kernel Testing & Dependability Micro Conference

Tales L. Aparecida <tales.aparecida@gmail.com>
B.Sc. Computer Science - Unicamp/Brazil

Abstract

https://lpc.events/event/16/contributions/1310/

Unit testing is a great way to ensure code reliability, leading to organic improvements, as it's often possible to integrate it with
developers' workflows. It is also of great help when refactoring, which should be a primordial task in large code bases. When it comes
to the Linux kernel, the KUnit framework looks very promising, as it works natively from inside the kernel, and provides an
infrastructure for running tests easily.

We are seeing a growing interest in unit testing on the DRM subsystem, with amazing initiatives to add KUnit tests to the DRM API.
Moreover, three GSoC projects under the X.Org Foundation umbrella target unit tests for AMDGPU display drivers, as it is currently the
largest one in the kernel. It is, thus, of great importance to discuss problems and possible solutions regarding the implementation of
KUnit tests, especially for hardware drivers.

Bearing this in mind, and as part of our GSoC projects [1], we introduce unit testing to the AMDGPU driver departing from the Display
Mode Library (DML), which is a library focused on mathematical calculations for DCN (Display Core Next); we also explore the
addition of new tests to DCE (Display Controller Engine). Since AMD's CI already relies on IGT GPU Tools (a test suite for DRM drivers)
we also propose an integration between it and KUnit which allows for DRM KUnit tests to be run through IGT as well.

In this talk, we present the tests' development process and the current state of KUnit in GPU drivers. We discuss the obstacles we
faced during the project, such as generating coverage reports, mocking a physical device, and especially in regards to the
implementation of tests for the AMDGPU driver stack, with the additional difficulties associated with making them IGT compatible.
Finally, we want to discuss with the community lessons learned using KUnit in GPU drivers and how to reuse these strategies for other
GPU drivers and also drivers in other subsystems.

[1] https://summerofcode.withgoogle.com/programs/2022/organizations/xorg-foundation

3

What this is about

This talk is the result of multiple Google Summer of Code Projects

under the X.Org Foundation[1] umbrella

4

● Mentored by

— Rodrigo Siqueira (AMD)

— Melissa Wen (Igalia)

— André Almeida (Igalia)

● Developed by

— Maíra Canal

— Magali Lemes

— Isabella Basso

— Tales Aparecida

[1] https://summerofcode.withgoogle.com/programs/2022/organizations/xorg-foundation

What this is about

DRM - Direct Rendering Manager 5

Goal: Learn how to write unit tests for physical device drivers
using AMD display driver as the subject.

The AMD display driver is part of the DRM subsystem and offers support
for many generations of GPUs, which results in its huge codebase.

Expected challenges

I. Initial expectation to find a steep learning curve to write
our first KUnit tests mocking a GPU.

II. Worry about how we should organize the code to
encourage the community to write more tests while also
aligning with the driver’s maintainers guidelines

6

Students groups respectively from State University of Campinas (Unicamp) + University of São Paulo (USP)

Development

7

Converted DRM kselftests into KUnit tests

● Started in a LKCamp + Flusp 2021 Hackathon

● This tests are part of the official test suite for any DRM change

○ This suite of tests was integrated into IGT GPU Tools

Development

8

I. First tests for functions clearly independent from the GPU
to learn KUnit basics
— First encounter with static functions that could be tested

II. More tests, this time for a given generation, but still no
hardware mocking required, just some test fixtures

III. Finally, some tests based on regressions, and still no
physical device mocking, but more static testing required

KUnit + gcov: Test Coverage

9

● Shows how much source code is run when the tests are executed

● Helps to track progress

● Potential projects for beginners

● A lot of code is actually hardware-agnostic!
— Device mocking is probably necessary in some cases,

but there are a lot of low hanging fruit without it

● Static functions might require tests
— Not everyone agrees with testing static functions

— It can be tricky to reach all code paths otherwise

10

Retrospective

1. test them inside the driver’s module
a. Keep them static
b. Stop being static

2. test them in a standalone testing module
a. Stop being static and export them
b. Stop being static and export the test cases
c. Keep them static and export the test cases

There are many alternatives for
testing static functions

11

AMDGPU module
file.o

Tests suite injected into the driver
keep it static

<amd/test.c>
KUnit test funcs
KUnit test suite

<amd/file.h>
untouched

<amd/file.c>
#ifdef AMD_KUNIT_TEST
 #include
<amd/test.c>

All tests run on load

Define tests cases and suites in a file that is
appended to the tested file footer.

Don’t need any exported symbols.
Don’t need declaration in header files.
Works for any functions in the file, even static.

No need to edit makefile

Documented at
https://docs.kernel.org/dev-tools/kunit/tips.html#te
sting-static-functions

12

AMDGPU module
file.o + test.o

Tests suite inside the driver
function is no longer static

<amd/test.c>
KUnit test funcs
KUnit test suite

<amd/file.c>
// not static

<amd/file.h>
// Declare functions

All tests run on load

Define tests cases and suites in a file that is
linked on compilation to the tested module.

Don’t need any exported symbols.
Need functions declared on header
Works for any functions in the header file.

Minor edit to makefile

13

AMDGPU module
file.o

Export driver symbols [conditionally]
function is no longer static

If you want to run test modules for declared functions, you only need to export when testing

<amd/file.c>
#ifdef AMD_KUNIT_TEST
EXPORT_SYMBOL(
 …AMDGPU functions)

<amd/file.h>
// Declare functions

Test suite module
test.o

<amd/test.c>
KUnit test funcs
KUnit test suite

14

Test suite module
test-suite.o

AMDGPU module
file.o + test.o

<amd/test.c>
Exported
KUnit test funcs

<amd/file.c>
// not static

<amd/file.h>
// Declare functions

<amd/test.h>
Declare test funcs

<amd/test-suite.c>
KUnit test suite

If you want to run test modules for declared functions, but don’t want conditional exporting

15

Export test cases symbols
function is no longer static

Inject and export tests cases
keep it static

AMDGPU module
file.o

<amd/test.c>
Exported
KUnit test funcs

<amd/file.c>
#ifdef AMD_KUNIT_TEST
 #include
<amd/test.c>

<amd/test.h>
Declare test funcs

Test suite module
test-suite.o

<amd/test-suite.c>
KUnit test suite

If you want to tackle both issues, run test modules and include static functions

16

Acknowledgements

● Google Summer of Code
— X.Org Foundation

● Mentors from AMD and Igalia

● Community (DRM, Kunit engineers)

● The Linux Foundation

17

See also my teammates at XDC
October 4-6

18

“KUnit sorcery and the uncanny nature of FPU in the DRM”

Maíra Canal <mairacanal@riseup.net>

Magali Lemes <magalilemes00@gmail.com>

Isabella Basso <isabbasso@riseup.net>

Let’s discuss

19

● Unit tests for static functions

● Standalone test modules VS

 test inside driver’s modules

● Other topics

Should we test static functions?

20

a) yes.

b) no.

c) no, convert them if you want to test

What to unit test?

21

a) only exported symbols

b) symbols at least declared in header (.h) files

c) anything, including static functions

IGT + Kunit?

22

a) I prefer to run KUnit inside IGT

b) I prefer running them separately

c) I don’t mind

Reach us

Tales Aparecida <tales.aparecida@gmail.com>

Maíra Canal <mairacanal@riseup.net>

Magali Lemes <magalilemes00@gmail.com>

Isabella Basso <isabbasso@riseup.net>

