
KUnit: Function Redirection
and More

Brendan Higgins <brendanhiggins@google.com>
David Gow <davidgow@google.com>

(aka) LPC2022: Dublin
Down On KUnit

Brendan Higgins <brendanhiggins@google.com>
David Gow <davidgow@google.com>

State of the KUnit

What's happened in the last year?

● Function redirection proposals
○ More on this later!

● New tooling features:
○ --kconfig_add and similar flags
○ + run_isolated

● More compatibility with modules and __init sections
○ Use kunit_test_init_section_suite
○ Tests built as modules no-longer conflict with module_init/_shutdown functions (Thanks

Jeremy Kerr)
● KASAN support for UML

○ (Thanks Patricia Alfonso and Vincent Whitchurch)
● For the full list, see https://kunit.dev/release_notes.html

https://kunit.dev/release_notes.html

Test case growth

● Definitely seeing
numbers
picking up

● 500 test cases in 6.0-rc2
● Super linear growth for

last 3 releases!

A quick list of fun new tests

● DRM subsystem tests / AMDGPU tests
● ChromeOS Embedded Controller Tests
● stackinit and overflow checking tests
● binfmt_elf has a test
● hlist
● and more!

New Features

New features

● --kconfig_add
○ e.g. run with KASAN:

./tools/testing/kunit/kunit.py run --kconfig_add CONFIG_KASAN=y
○ (KASAN now supports UML, too!)
○ or, run a Rust kernel with its doctests enabled, built with clang, under qemu on x86_64:

./tools/testing/kunit/kunit.py run --arch x86_64 --kconfig_add
CONFIG_RUST=y --make_options LLVM=1

● Or chain multiple --kunitconfig options:
○ ./tools/testing/kunit/kunit.py run \

--kunitconfig fs/ext4/ \
--kunitconfig fs/fat/

● suite_init
● hermetic testing
● kunit.enable

KTAP is happening

● KTAP is a standard for test output.
● It's upstream now.

○ Documentation/dev-tools/ktap.rst
● And version 2 is happening, thanks Frank!
● Speak now, or have your feature delayed 'til v3

https://docs.kernel.org/dev-tools/ktap.html

New Maintainer!

● Not really
● David has been a de facto maintainer for a while
● I finally got around to documenting it in MAINTAINERS

Rust Support

● Support for doctests in Rust
○ Rust doctests are automatically converted to KUnit tests.
○ ./tools/testing/kunit/kunit.py run --arch x86_64 --kconfig_add

CONFIG_RUST=y --make_options LLVM=1

● UML support in Rust
○ Hitting a few bugs in rustc, but we have workarounds.

● Some interesting discussion around handling stack unwinding after
assertions:

○ https://github.com/Rust-for-Linux/linux/issues/759
○ Also affects kernel BUGs

● Difference between binding and using KUnit calls directly, versus writing Rust
tests and having the converted automatically.

https://github.com/Rust-for-Linux/linux/issues/759

Resource System

Understanding and Splitting the Resource System

● KUnit supports creating 'resources', which are attached to a test.
● Automatically cleaned up on test exit.

○ Both success and failure.
● Reference counted.
● Able to be 'looked up'

○ Either with a lookup function,
○ or by name (a 'named resource')

● Always represented as a struct kunit_resource*.

Problems

● Inconsistent allocation story.
○ Does KUnit allocate the struct kunit_resource, or does the user?
○ Who then frees it?
○ How do you safely free a resource early?

● Refcounts not always being used correctly.
● Type confusion when looking up resources.

○ Using the 'free' function as a key.
● Use for simple "I just want to free this" cases complicated.

Solution: Split and Simplify

● Simplify the existing API:
○ Focus on "I want to look up this resource" use-case
○ Reference-counting mandatory.

● Add a new 'kunit_defer' API.
○ Based on go's 'defer' statement.
○ Pass a function point and a void * context.
○ Execute on test shutdown, in opposite order.
○ Can 'cancel' or 'trigger' such functions early
○ Easy to wrap allocation / free functions.

● Make sure cleanup happens before the thread is destroyed.
○ (Wherever possible.)
○ Optionally halt / reboot when something goes badly wrong.

Function Redirection

Mocking: Subsystem and Hardware testing

● Unit testing requires isolating the "unit" being tested.
○ In KUnit, this means a "standalone" function.
○ Code which access hardware or otherwise affects / is affected by global state has problems.

● The traditional solution: "mock" versions of hardware or subsystems.
● Automating this is hard:

○ See kunit.dev/mocking.html
● Ultimately, some code (typically a function call) needs to be redirected from

calling the "real" function to "test" code.
● Can either:

○ refactor code to support this (passing through test flags, or function pointers), or
○ intercept the call at the callee, and have it behave differently under test

● Both have their place, here are our implementations of the latter:
○ https://lore.kernel.org/lkml/20220910212804.670622-1-davidgow@google.com/

http://kunit.dev/mocking.html
https://lore.kernel.org/lkml/20220910212804.670622-1-davidgow@google.com/

Static stubbing

● Just add this magic incantation to any function which might need replacing:
○ KUNIT_STATIC_STUB_REDIRECT(<function name>,

<arguments>…);
● Enable redirection with:

○ kunit_activate_static_stub(test, <real fn>,<replacement fn>);
● No dependencies, works on all architectures.
● Compiles down to nothing if KUnit is not enabled

○ But some small performance cost if it isn't, even on functions not
actively being redirected.

● Implementation:
○ https://lore.kernel.org/lkml/20220910212804.670622-2-davidgow@goo

gle.com/

https://lore.kernel.org/lkml/20220910212804.670622-2-davidgow@google.com/
https://lore.kernel.org/lkml/20220910212804.670622-2-davidgow@google.com/

static stub example
/* This is a function we'll replace with static stubs. */
static int add_one(int i)
{

/* This will trigger the stub if active. */
KUNIT_STATIC_STUB_REDIRECT(add_one, i);
return i + 1;

}
/* This is used as a replacement for the above function. */
static int subtract_one(int i)
{

/* We don't need to trigger the stub from the replacement. */
return i - 1;

}

/*
 * This test shows the use of static stubs.
 */
static void example_static_stub_test(struct kunit *test)
{

/* By default, function is not stubbed. */
KUNIT_EXPECT_EQ(test, add_one(1), 2);
/* Replace add_one() with subtract_one(). */
kunit_activate_static_stub(test, add_one, subtract_one);
/* add_one() is now replaced. */
KUNIT_EXPECT_EQ(test, add_one(1), 0);
/* Return add_one() to normal. */
kunit_deactivate_static_stub(test, add_one);
KUNIT_EXPECT_EQ(test, add_one(1), 2);

}

ftrace Stubbing

● Like static stubbing, but using ftrace to redirect function calls.
○ No need for a function prologue macro, but functions can't be inline.

● Almost identical API to static stubbing:
○ kunit_activate_ftrace_stub(test, <real fn> <replacement>);

● No performance overhead at all for un-redirected functions.
● Requires ftrace and livepatch, which are only available on some architectures.
● Implementation:

○ https://lore.kernel.org/lkml/20220910212804.670622-3-davidgow@google.com/

https://lore.kernel.org/lkml/20220910212804.670622-3-davidgow@google.com/

ftrace stub example
/* This is a function we'll replace with an ftrace stub. */
static int KUNIT_STUBBABLE add_one(int i)
{

return i + 1;
}
/* This is used as a replacement for the above function. */
static int subtract_one(int i)
{

return i - 1;
}
static void example_ftrace_stub_test(struct kunit *test)
{
#if !IS_ENABLED(CONFIG_KUNIT_FTRACE_STUBS)

kunit_skip(test, "KUNIT_FTRACE_STUBS not enabled");
#else

/* By default, function is not stubbed. */
KUNIT_EXPECT_EQ(test, add_one(1), 2);
/* Replace add_one() with subtract_one(). */
kunit_activate_ftrace_stub(test, add_one, subtract_one);
/* add_one() is now replaced. */
KUNIT_EXPECT_EQ(test, add_one(1), 0);
/* Return add_one() to normal. */
kunit_deactivate_ftrace_stub(test, add_one);
KUNIT_EXPECT_EQ(test, add_one(1), 2);

#endif
}

Open Questions

● How useful is function redirection?
● How dangerous is it to replace a widely-used function at runtime?

○ Even if this change is scoped to a single test's kthread.
● Are maintainers okay with disabling inlining or adding these function redirect

macros?
○ Even if they compile to nothing if KUnit is disabled.
○ Several people (Android, Red Hat) are building production kernels with KUNIT compiled in!

● Static stubbing, ftrace-based stubbing, both?, neither?, swappable
implementations?

○ Can/Do we use static_call to optimise the static_stub implementation?
○ The Code Tagging feature might be interesting here.
○ What can we do to support more architectures for ftrace?

Questions / Comments?
Or visit kunit.dev/ and subscribe to

kunit-dev@googlegroups.com

Backup Slides

Hardware Mocking

● Built on top of function redirection stuff
● logic_iomem
● Current focus on platform drivers

Hardware Mocking - Register Description

static struct kunit_fake_register_map_entry
aspeed_i2c_fake_register_map[] = {

KUNIT_FAKE_REG_32_NOP(ASPEED_I2C_FUN_CTRL_REG),
KUNIT_FAKE_REG_32_NOP(ASPEED_I2C_AC_TIMING_REG1),
KUNIT_FAKE_REG_32_NOP(ASPEED_I2C_AC_TIMING_REG2),
KUNIT_FAKE_REG_32_VAR(ASPEED_I2C_INTR_CTRL_REG,

 struct aspeed_i2c_fake_device,
 interrupts_active),

KUNIT_FAKE_REG_32_RW(ASPEED_I2C_INTR_STS_REG,
 aspeed_i2c_fake_read_intr_sts_reg,
 aspeed_i2c_fake_write_intr_sts_reg),

KUNIT_FAKE_REG_32_RW(ASPEED_I2C_CMD_REG,
 aspeed_i2c_fake_read_command_reg,
 aspeed_i2c_fake_write_command_reg),

KUNIT_FAKE_REG_32_NOP(ASPEED_I2C_DEV_ADDR_REG),
KUNIT_FAKE_REG_32_RW(ASPEED_I2C_BYTE_BUF_REG,

 aspeed_i2c_fake_read_byte_buf_reg,
 aspeed_i2c_fake_write_byte_buf_reg),

{},
};

Hardware Mocking - Register Description

● KUNIT_FAKE_REG_32_NOP - Does nothing. Legal to access, but does nothing.
○ Useful for initial prototyping. Figuring out what the hardware does.

● KUNIT_FAKE_REG_32_VAR - Stores a value that is easily retrievable, otherwise
does nothing.

○ A lot of registers don’t do anything kernel visible right away.
● KUNIT_FAKE_REG_32_RW - Does whatever you want.

○ Anything more complicated than storing a value usually requires arbitrary logic.

Hardware Mocking - Register Description
KUNIT_FAKE_REG_32_RW(ASPEED_I2C_CMD_REG,

 aspeed_i2c_fake_read_command_reg,
 aspeed_i2c_fake_write_command_reg),

static u32
aspeed_i2c_fake_read_command_reg(struct kunit_fake_device *fd,

struct kunit_fake_register_map_entry *entry,
unsigned long offset)

{
struct aspeed_i2c_fake_device *i2c_fake = fd->priv;

if (i2c_fake->sda_hung) {
return ASPEED_I2CD_BUS_BUSY_STS | ASPEED_I2CD_SCL_LINE_STS;

} else if (i2c_fake->scl_hung) {
return ASPEED_I2CD_BUS_BUSY_STS | ASPEED_I2CD_SDA_LINE_STS;

} else if (i2c_fake->busy) {
i2c_fake->busy = false;
return ASPEED_I2CD_BUS_BUSY_STS |

 ASPEED_I2CD_SDA_LINE_STS |
 ASPEED_I2CD_SCL_LINE_STS;

}
return 0;

}

Hardware Mocking - Register Description

static void aspeed_i2c_master_xfer_idle_bus(struct kunit *test)
{

struct aspeed_i2c_driver_test_ctx *ctx = test->priv;
struct aspeed_i2c_fake_device *i2c_fake = ctx->i2c_fake;
struct i2c_client *client = ctx->client;
u8 msg[] = {0xae, 0x00};
int i;

i2c_fake->busy = true;
KUNIT_ASSERT_EQ(test,

ARRAY_SIZE(msg),
i2c_master_send(client, msg, ARRAY_SIZE(msg)));

KUNIT_EXPECT_FALSE(test, i2c_fake->busy);
KUNIT_ASSERT_EQ(test, i2c_fake->msgs_count, 1);
KUNIT_EXPECT_EQ(test, client->addr, i2c_fake->msgs->addr);
KUNIT_EXPECT_EQ(test, i2c_fake->msgs->len, ARRAY_SIZE(msg));
for (i = 0; i < ARRAY_SIZE(msg); i++)

KUNIT_EXPECT_EQ(test, i2c_fake->msgs->buf[i], msg[i]);
}

Hardware Mocking - Limitations

● Depends on mocking interrupt and reset
○ Necessary for this driver, mocking other functions might be necessary for other drivers
○ Would it be better to do something specific to interrupt like logic_iomem?
○ What functions are too important to have a static stub?

● logic_iomem was not intended to be used this way
● A lot of gross platform driver helpers
● Device API and OF API heavily abused

Hardware Mocking - What do you think?

● Are we on the right track?
● Does anyone care?
● Should we fake hardware descriptions?
● Anyone familiar with roadtest?

○ Would that be better?
● Are platform drivers the right place to start?

The Challenges Faced in 2021/2022

Feature Gaps:

● QEMU support
● Modules support
● Mocking support
● Gotchas in the Resource system
● (K)TAP standardisation
● Android (and others) compiling KUnit (and disabling it) on production kernels.

