SPDM & Device Attestation
Ideal Outcomes

• Clear set of requirements
• Constraints on options
• A cunning plan...
SPDM BoF – Agenda

- Agenda Bashing
- Introduction to SPDM
- Use cases
- Contentious issues list
- Discussion
Device Attestation – Why?

- Authenticate pluggable components
 - Repel attacks
 - replacement (attestation)
 - interception (encryption)
 - Detect incorrectly plugged components
- Verify device state
 - Repel attacks on firmware (could be changed by host, BMC etc)
 - Detect unexpected state
Device Attestation – How

- Establish device we see is the device we think it is
 - Public key crypto: device has secret, presents certificate chain
- Establish state of device
 - Signed measurements: e.g. firmware image signature
- Link protection
 - Establish secure channel, exchange encryption key
Device Attestation – Where?

• Attestation handled by Trusted Element
 - If hypervisor not trusted
 - Use case: Trusted Virtual Machines / Confidential Computing
 - Attestation probably not Linux’s problem
• Attestation handled by Operating System
 - Use case: Bare metal composable servers
 - Attestation is Linux’s problem, Linux may be Root of Trust
DMTF SPDM

- Security Protocol and Data Model
- Defines exchanges + state machines to attest devices, take measurements and establish secure channel
- Communicates with devices through one of several transports:
 - PCI DOE (mailbox in config space)
 - MCTP
 - Others
SPDM – Exchange

- CHALLENGE_AUTH flow establishes device identity
- Stateful, effectively single operation
- Subsequent exchange retrieves measurements
- Mutual authentication supported
SPDM – Adoption

- PCI CMA (Attestation and Measurement)
- PCI IDE (Link Encryption)
- PCI TDISP (Trusted I/O Virtualization)
- CXL
- Open Compute Project
 - NVMe
 - System Components Attestation
Kernel elements:
- Transports:
 - MCTP (v5.15)
 - PCI DOE (v6.0)
- SPDM library PoC
- CXL device attestation PoC

Supporting elements:
- libspdm
 - reference implementation
 - used for testing, not currently part of solution
- QEMU passthrough to libspdm
Contentious Questions!

• Useful or not? (at Linux layer of stack)
• Certificate handling in kernel vs. in user space?
 – Can’t depend on user space after resume
 – Potential deadlocks
• Idea: kernel-bundled user space binary (à la net/bpfilter/)?
• Security policy: hard coded vs. user configurable?