
Proprietary + Confidential

Ofir Weisse, Junaid Shahid
Sep 13, 2022

Revisiting
Address Space Isolation

Google, LPC 2022

Proprietary + Confidential

The Speculative Attacks Threat

● These are μ-architectural attacks
● They break architectural boundaries

○ User/kernel boundary
○ Inter-process boundary
○ VM/host boundary

● They therefore compromise
○ Our customer’s data
○ Infrastructure (host) credentials

● Current mitigations are either
○ High overhead, or
○ Incomplete

Proprietary + Confidential

What happened since last time we presented ASI?

● New vulnerabilities discovered

● Most recent, most (in)famous - Retbleed

● Every vuln is a fire drill
○ 10s of engineers working on a fix
○ Months of preparation

● Performance degradation - 15-40% !!!!
○ E.g. phoronix.com/review/retbleed-benchmark

● Code investment, e.g.:
○ 52 files changed, 1634 insertions(+), 214 deletions(-)

http://phoronix.com/review/retbleed-benchmark

Proprietary + Confidential

Should we rethink ASI?

● In current world, new attack means

○ Months of (urgent) work

○ Many engineers

○ Scattered around the kernel

● In ASI world, a new attack mean

○ A few more lines in asi_enter()/asi_exit()

○ Probably a single engineer to write

● Performance estimation: 2-14%

● Can be improved by increasing the allow-list

Proprietary + Confidential

ASI performance - Redis throughput

Proprietary + Confidential

ASI Performance - Aerospike throughput

Proprietary + Confidential

ASI Performance - Disk-fIO bandwidth

Proprietary + Confidential

Bitter ASI pill to swallow

● The mechanism is not small/trivial

○ Modifying memory management, interrupt handling, KVM code

○ Well, neither are the ad-hoc mitigation mechanisms for retbleed etc.

● Discovering the allow-list requires a framework + expertise

○ So does the effort for mitigating the stream of vulnerabilities

● Annotating kmalloc’s/vmalloc’s with GFP_X_NONSENSITIVE pollutes

the the source tree

○ There are some alternatives

○ We can try moving to a deny-list approach, but risk unknown exposure

Proprietary + Confidential

Speculative Attacks and ASI refresher

Proprietary + Confidential

Speculative

Status quo: u-arch buffers are always (potentially) contaminated with secrets

Sad conclusion: Need to either a) stop speculation or b) continuously scrub state

Rethinking Mitigation - Understanding the Leak

Architectural

Secret Leakable
State

(L1D etc.)

Exposure

Speculative

Secret

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

Step 3: Recovering the secrete

For more details: ofirweisse.com/MICRO2019_NDA.pdf

http://www.ofirweisse.com/MICRO2019_NDA.pdf

Proprietary + Confidential

Speculative

Rethinking Mitigation - Limiting Exposure

Architectural
Leakable

state

Speculative

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

We want a way to circumscribe access to secrets and leakable state.

We then apply protection only when secrets are “in flight”

Proprietary + Confidential

Speculative

Idea: #PF as a fork between
speculative & non-spec exec

Architectural
Leakable

state

Speculative

Secret

Step 1: Accessing a secret Step 2: Leaking (“transmitting”) it

We want a way to circumscribe access to secrets and leakable state.

We then apply protection only when secrets are “in flight”

Page-fault Scrub state

Proprietary + Confidential

• Split kernel memory to
privileged and unprivileged-domains

• Each domain has a seperate
page-table

• Touching data out of a domain
results in a page-fault -
cannot be speculative

• At first, only include kernel addresses
• ASI can be extended to include

userspace memory

Address Space Isolation - Basic Idea

Guest OS
A

Guest OS
B

VMEXIT interrupt

Host
ASI domain

1
ASI domain

2
Privileged
memory

Guest A’s stuff Guest B’s stuff

VMEXIT interrupt

Proprietary + Confidential

//IOCTL KVM_RUN

for (;;) { // in vcpu_run()

// call vmx_vcpu_run()

asi_enter(); // Switch CR3 to

 // unprivileged map

// VMENTER

// VMEXIT by the platform

// Try to handle exit, may touch

privileged data, which will cause

A page fault --> asi_exit()

}

ASI Lifecycle

Guest OS A Guest OS B
VMEXIT interrupt

Host
ASI

domain
1

ASI
domain

2
Privileged
memory

Guest A’s

stuff

Guest B’s

stuff

VMEXI

T

interrupt

Proprietary + Confidential

What happens on a page-fault?

Guest OS A Guest OS B
VMEXIT interrupt

Host

Guest A’s

stuff

Guest B’s

stuff

VMEXI

T

interrupt

ASI
domain

1

ASI
domain

2
Privileged
memory

1. Call asi_exit() which will:

2. Call pre_asi_exit() callback which will

a. Stun sibling core

b. Retbleed add-on: flush branch predictors

c. Log exit stat

3. Switch page table (CR3 in Intel) to the privileged

page-table

Proprietary + Confidential

What happens on re-entry via asi_enter()?

1. Switch page table (CR3 in Intel) to the un-privileged

Page-table

2. Call post_asi_enter() callback which will

a. Flush L1D cache

b. New attack add-on: and other uarch buffer

c. Unstun sibling core

Guest OS A Guest OS B
VMEXIT interrupt

Host

Guest A’s

stuff

Guest B’s

stuff

VMEXI

T

interrupt

ASI
domain

1

ASI
domain

2
Privileged
memory

Proprietary + Confidential

How to discover the appropriate allow-list?

Proprietary + Confidential

How to discover the appropriate allow-list?

● We can count ASI-exit/VM-exit ratio

● Log stack traces of accessing code paths

● Log stack traces of memory allocation code paths

Proprietary + Confidential

Analyzing Redis YCSB

Ratio of ASI-exits/VM-exits

Proprietary + Confidential

Analyzing Redis YCSB
Exit details

Proprietary + Confidential

Analyzing Redis YCSB
Exit details

Proprietary + Confidential

Analyzing Redis YCSB
Exit details

Proprietary + Confidential

What’s next? Will upstream adopt ASI?

