Linux

Plumbers
Conference

Dublin, Ireland

Make RCU do less (& later) |

Presenters:
Joel Fernandes (Google)
Uladzislau Rezki (Sony)
Rushikesh Kadam (Intel)

Intel power data courtesy: Sitanshu Nanavati.

Overview

e Discuss what RCU does at high-level (not how it works!).

e Discuss the 2 main issues we found:

o On a mostly idle system, RCU activity can disturb the idleness.
m RCU blocking the scheduler tick ON when idle.

m RCU constantly queuing callbacks on a lightly loaded system.

e Discuss possible solutions.

)

Linux
Plumbers

lllllllllll

Linux
What RCU does? ﬁ?&’é?é’éﬁce

llllll , Ireland

e RCU reader critical section protected by “read lock”

e RCU writer critical section protected by regular locks.

e Reader and writer execute concurrently.

e Writer creates copy of obj, writes to it and switches object
pointer to new one (release ordered write).

e Writer GCs old object after waiting (update)

Linux
What RCU does? ﬁ?&’é?é’éﬁce

llllll , Ireland

e That’s just one use case, there are many uses of RCU.
All use cases need same basic tools:

e Lock-less markers of a critical section (CS).
e Start waiting at some pointin time (t = TO).

e Stop waiting until all readers that existed at TO exited CS.

Linux
What RCU does” ﬁ Conforence

Dublin, Ireland September 12-14, 2022

e On alocal CPU (running in kernel mode).

Upper red arrows are timer tick checking are there
readers left? If not, report.

Time

Queued a Callback (CB)
Lower red arrows are timer tick: have ALL CPUs
reported? If yes, execute CB. If no, try again.

Linux
What RCU does” ﬁ Conforence

Dublin, Ireland September 12-14, 2022

e On alocal CPU (running in idle mode).

Upper red arrows are timer tick checking are there
readers left? If not, report.

THESE NOT NEEDED - AS CPU CANNOT BE IN
RCU READER CRITICAL SECTION!

Queued a Callback (CB)

Lower red arrows are timer tick: have ALL CPUs
reported? If yes, execute CB. If no, try again.
THESE STILL NEEDED - AS local CPU has queued CB.

Linux
What RCU does? ﬁ?&’é?é’r%rﬁce

llllll , Ireland

o You see the problem?
m RCU can block the timer tick from getting turned off!
m Negates power-savings of CONFIG_NOHZ_IDLE

Linux
What RCU does? ﬁ?&’é?é’r%rﬁce

llllll , Ireland

o This happens even in user mode

o NOHZ_FULL systems typically turn tick off. RCU can keep it on.

Issue 1. RCU keeping the scheduler tick ON when idle.

e “Local Video Playback” use-case
has 2500+ wakes per second. A
large chuck of the wakes result
from RCU callbacks blocking the
dynticks-idle mode

e RCU wakes are seen at HZ rate
(red boxes) between graphics
16.6ms activity (blue boxes)

e Blocks deeper Package C-states.

Impacts power

File Filter Plots Capture Help
Pointer: 322.949997 Cursor: 322.932411 Markerlj 322.932411 Mﬂ. -9223371714.536388 A.B Delta: 9223372036.240752
322% 322.923065 322938188 322953310
o L 111 T ! 1l
oo |1 || L1 I L
cou2 wy ¥ || 1 A I 0 I -]
U3 | |
cpua L'l WU LR LR i WY [0l b1 AT L Hwyy
cous 'R RN 'Rl T TR TR i |
e R | I A 1 o] T
cpu7 | i N N 1 1 G | '
cous § | | i I8
U9 " |]
cou 10 "I’ { | i
N I T N TN | v 1 PR |
(3 _

Pagell] Search: Column: # v | contains - Dgnphfonw"‘m
ICPU |11ml Stamp |mk PID |Latency |Event Ilnlo
23516 11 322931464 <idle> 0 78l reu_utilization €nd RCU core
23517 5 322931465 <idle> 0 .51 reu_utilization End RCU core
23518 7 322.931465 <udle> o ..81 reu_utilization End RCU core

0 s rou_utifization End RCU core

0 sStart uh.du ~tick

Linux
Plumbers
Why was RCU keeping the tick on? ﬁsb?f:i?"ence

e By default RCU executes callbacks on the same CPU that queued them, in
a softirq.

e If there are Callbacks queued , keeping the tick on ensures the CBs are
executed in a timely fashion.

Issue 1. RCU keeping the scheduler tick ON when idle.
Possible solution: Using CONFIG_FAST NOHZ option

e This option permits CPUs to enter the dyntick-idle state (the state where the tick is
turned off) even if they have CBs queued.

e |dle CPUs with callbacks are kept idle for a minimum number of jiffies before
rechecking of the RCU state.

Issue 1. RCU keeping the scheduler tick ON when idle.

Solution for newer kernels:

e CONFIG_FAST_NO HZ is removed in recent kernels.

e CONFIG_RCU_NOCB_CPU : Execute RCU CBs in per-cpu threads.

e Scheduler may or may not move threads to non-idle CPUs and is in control of
whether CPU needs to be idle or execute callbacks.

e Both starting of new grace periods, and executing CBs are moved out of the

softirg context and into threads.

Issue 1. RCU keeping the scheduler tick ON when idle.

e RCU callback offload unblocks
dynticks-idle and hence reduces f
wakes.

e RCU callback offload does increa
scheduler wakes marginally, but
total platform wakes.

e Improves Package C-states resid
hence SoC + Memory power.

Wakes
——Sched =e=Timer =e=Sched+Timer All
3300 2874
T 3000 2562 2548
S 2500 ‘—\;2{5)2
{ 2000 1557 4
(V]
= 500
0
Baseline Baseline + RCU_NOCB
I
Soc+Mem Power - DAQ
M Avg. Soc+Mem Soc+Mem savings wrt Baseline
100.0%
100.0%
87.8%
80.0%
§ 60.0%
S 40.0%
&
20.0% 12.2%

0.0%
Baseline Baseline + RCU_NOCB

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Package C-states
EPCO ®WPC2 mPC3 PC6 WPC8 mPC10

Baseline Baseline + RCU_NOCB

Use-case: Local video playback via
Chrome browser, VP9 1080p @ 30
fps content

Device: Chrome reference device,
AlderLake Hybrid CPU with 2
Cores (with Hyperthreading) + 8
Atoms

Observation: ChromeQOS when idle

Several callbacks constantly queued.
ChromeQOS login + screenoff

Device is on battery.

Linux
Plumbers
Conference

Dublin, Ireland

21:57:07 loadavg: 0.06 ©.50 0.55 2/629 8945

Callback
inode free by rcu
delayed put task struct
k itimer _rcu free
radix_tree node_rcu_free
rcu_work rcufn

put_cred rcu
delayed put pid
unbind fence free rcu
dst_destroy rcu

1915 gem free object rcu
thread stack free rcu

Queued Executed
10
15
9
27
2
8
15
>
10
10
74

QObservation:
ChromeQOS
Display pipeline

Display pipeline in
ChromeOQOS constantly
opens/close graphics
buffers.

VizCompositorTh-1999 [006] 1472.325451: sys_enter_close:
VizCompositorTh-1999 [006] 1472.325457: sys_enter_close:
ThreadPoolSingl-6857 [010] 1472.325734: sys_enter_close:
ThreadPoolSingl-6857 [010] 1472.325743: rcu_callback:
chrome-1975 [000] 1472.344365: sys_enter_close:
DrmThread-1993 [002] 1472.344627: sys_enter_close:
DrmThread-1993 [002] 1472.344844: sys_enter_close:
chrome-1975 [000] 1472.345019: sys_enter_close:
VizCompositorTh-1999 [006] 1472.345071: sys_enter_close:
VizCompositorTh-1999 [006] 1472.345088: sys_enter_close:
kworker/10:2-2105 [010] 1472.346603: rcu_callback:
kworker/9:4-3546 [009] 1472.346603: rcu_callback:
kworker/0:4-3506 [000] 1472.346606: rcu_callback:

DrmThread-1993 [002] 1472.357990: sys_enter_close:

DrmThread-1993 [002] 1472.358005: rcu_callback:
chrome-1975 [000] 1472.358200: sys_enter_close:
VizCompositorTh-1999 [006] 1472.358367: sys_enter_close:
chrome-1975 [000] 1472.358539: sys_enter_close:
chrome-1975 [000] 1472.358546: sys_enter_close:
chrome-1975 [000] 1472.358548: sys_enter_close:
VizCompositorTh-1999 [006] 1472.358778: sys_enter_close:
VizCompositorTh-1999 [006] 1472.358784: sys_enter_close:
ThreadPoolSingl-6857 [010] 1472.359008: sys_enter_close:
ThreadPoolSingl-6857 [010] 1472.359019: rcu_callback:
chrome-1975 [000] 1472.377594: sys_enter_close:
DrmThread-1993 [002] 1472.377825: sys_enter_close:
DrmThread-1993 [002] 1472.378043: sys_enter_close:
chrome-1975 [000] 1472.378227: sys_enter_close:
VizCompositorTh-1999 [006] 1472.378341: sys_enter_close:
VizCompositorTh-1999 [006] 1472.378356: sys_enter_close:
kworker/2:1-7250 [002] 1472.378524: rcu_callback:
kworker/0:4-3506 [000] 1472.379626: rcu_callback:
kworker/10:2-2105 [010] 1472.380627: rcu_callback:
DrmThread-1993 [002] 1472.391294: sys_enter_close:
DrmThread-1993 [002] 1472.391306: rcu_callback:

fd: 0x00000033

fd: 0x00000046

fd: 0x00000025

rcu_preempt rhp=0xffffof3edc718480 func=file_free_rcu 1
fd: 0x0000002d

fd: 0x00000044

fd: 0x00000044

fd: 0x00000046

fd: 0x00000046

fd: 0x00000044

rcu_preempt rhp=0xffffof41efa9f600 func=rcu_work_rcufn 1
rcu_preempt rhp=0xffff9f41efa5f600 func=rcu_work_rcufn 1
rcu_preempt rhp=0xffffof41ef81f600 func=rcu_work_rcufn 1
fd: 0x0000002e

rcu_preempt rhp=0xffffof3eb9328000 func=file_free_rcu 1
fd: 0x00000038

fd: 0x0000002e

fd: 0x00000044

fd: 0x0000002e

fd: 0x00000038

fd: 0x0000002e

fd: 0x00000046

fd: 0x00000025

rcu_preempt rhp=0xffffof3e8d28e300 func=file_free_rcu 1
d: 0x0000002d

fd: 0x0000003f

d: 0x0000003f

d: 0x00000046

d: 0x00000046

d: 0x0000003f

rcu_preempt rhp=0xffffof41ef89f600 func=rcu_work_rcufn 1
rcu_preempt rhp=0xffffof41ef81f600 func=rcu_work_rcufn 1
rcu_preempt rhp=0xffffof41efa9f600 func=rcu_work_rcufn 1
fd: 0x00000033

rcu_preempt rhp=0xffffof3eb9328600 func=file_free_rcu 1

=

= —h —h —h

Observation: Logging in Android (as example)

Example: Logging during static image (Android).

Static image is important use-case for power testing on Android. The system is
mostly idle to minimize a power drain of the platform:

e Panel refresh-rate is zero, i.e. it is stopped and power collapsed
e CPUs spend most of their time in deepest C-state
e SoC bandwidth is minimal (memory bus, CPU/cache frequencies, etc.).

Logging does constant file open/close inducing RCU pressure when FDs get
freed. As a side effect of such periodic light load, many wakeups happen due to
frequent kicking an RCU-core for initializing a GP to invoke callbacks after it

passes.

Observation: Logging in Android (as example)

Below is a wakeup trace log of static image use-case during 30 seconds.

<wake-up-trace-log>

rcuop/2 pid: 33 woken-up 36709 interval: min 1320 max 71837 avg
9?230p/3 pid: 40 woken-up 36944 interval: min 1582 max 78649 avg
9?§3op/0 pid: 15 woken-up 40570 interval: min 1520 max 80442 avg
8?23op/1 pid: 26 woken-up 40695 interval: min 1414 max 80043 avg
8§§309/@ pid: 14 woken-up 57907 interval: min 73 max 27855 avg
6%33@1.@. pid: 1116 woken-up 89498 interval: min 231 max 17442186 avg
4??51preempt pid: 13 woken-up 90203 interval: min 39 max 8505 avg
?zgéd pid: 1195 woken-up 250398 interval: min 92 max 16375 avg

<wake-up-trace-log>

A trace was taken on the ARM big.LITTLE system. It is obvious that the biggest part
belongs to the “iddd logger” whereas a second place is fully owned by the RCU-core

~iiRkheavientfArAs AAaarvlisAA Al rAaAA

Observation: Logging in Android (as example)

RCU mostly invokes callbacks related to the VFS, SELinux subsystems during logging:

file_free_rcu()
inode_free_by_rcu()
i_callback()
__d_free()
avc_node_free()

Since system is lightly loaded and a number of posted callbacks to be invoked are rather
small, between 1-10, such pattern produce most of the wakeups (in static image use-case)

to offload a CPU with __only _ few callbacks there.

CPUO

CPU1

CPU2

Observation: Logging in Android

10498.870329 10499, 663742 10500.457154
r 1

I.I/TII‘ I o I I o | O W T I M A AR [A Y ullHllHH,H L

A O 1 1 e e W (1T TR T I L

1P Y I ey M 1 e [R e T I SN T Y A o Y 11 ll;!ll n

ors JLII]II((H L LU0 R B L T e 1AL, T P 1 S e o A T

2
cru4 _____6__7_ millisecondsinterval ________ . _________________ s
CPUS
CPUG
CPU7
search: Column # ~ contains v Next | Prev v Graph follows
§ CPU Time Stamp Task PID Latency Event Info
10498.892424 rcuop/2 33 d..1 rcu/rcu_batch_start rcu_preempt/CBs=32 bl=10

l_m-

WNOWONOWNO

rcu_preempt CBs=10 bl=10

10498.900003 rcuop/l 26 rcu/rcu_batch_start rcu_preempt CBs=18 bl=10

10498.900056 rcuop/0 15 d..1 rcu/rcu_batch_start rcu_preempt| CBs=10 bl=10

10498.900083 rcuop/2 33 d..1 rcu/rcu_batch_start rcu_preempt| CBs=10 bl=10

10498.900177 rcuop/3 40 d..1 rcu/rcu_batch_start rcu_preempt] CBs=18 bl=10

10498.908245 rcuop/0 15 d..1 rcu/rcu_batch_start rcu_preempt] CBs=10 bl=10 ;
10498.908385 rcuop/l 26 d.1 rcu/rcu_batch_start rcu_preempt CBs=17 bl=10 ———0Only a few callbacks are invoked
10498.908493 rcuop/2 33 d..1 rcu/rcu_batch_start rcu_preemptf CBs=11 bl=10

10498.908536 rcuop/3 40 d..1 rcu/rcu_batch_start rcu_preempt| CBs=25 bl=10

10498.916187 rcuop/0 15 d..1 rcu/rcu_batch_start rcu_preempt| CBs=6 bl=10

10498.916369 rcuop/l 26 d..1 rcu/rcu_batch_start rcu_preempt{ CBs=17 bl=10

10498.916574 rcuop/3 40 d..1 rcu/rcu batch start rcu preempt\CBs=29 bl=10

ome screen swipe(as example)

cPU3 |
default
___ 1
:_ __ I
I 1301.997428 1317.004447 1332.011466 I
|
I cruo I
I I
: CcPU1 | |
| crpu2 |
| |
| cPus |
|
e [=~
- rcu lazy v6 |
= = |
|

mA

mA

1,200 4
1,000 -
800 -

600 |

400

200}

1,000
800 -

600 -

400

ome screen swipe power(~3% delta)

200

00:04:30 00:04:45 00:05:00 00:05:15 00:05:30
= Current [mA]

avg: ~352mA

- e - - - el e e e e e e L B B T T e ———

00:16:45 00:17:00 00:17:15 00:17:30 00:17:45
= Current [mA]

Issue 2: RCU queuing CBs on lightly loaded system

e Observation: When a system is relatively idle, most CBs in the system don't
need to be executed soon, we can in fact delay them as long as needed.

e Selectively identify frequently occurring CBs in the system that “trickle”.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Delay RCU processing using jiffies till {first,next} fgs

e Great power savings

jiffies_till first_fqgs & =3,3 =8,8 =16,16 | =24,24 | =32,32
jiffies till next fgs (default)
SoC+Memory, power savings w.r.t 11.1% 13.1% 13.9% 14.4% 14.2%
Baseline

e Problem:

o Causes slow down in ALL call_rcu() users globally whether they like it or not.
o Causes slow down in synchronize_rcu() users globally.

o Significantly regresses boot time.

SBRfA R 3B e 00 ARG IRRARG Sy stem

slowdown.
o ChromeOS tab switching autotest

m Dueto synchronize rcu() latency increases quickly from 23 ms to 169 ms

(with changing jiffies from 3 to 32)

o The same evaluation with synchronize rcu_expedited() gives us a latency of < 1

msec at jiffies = 32

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies increase causing function tracer issues

Several paths in ftrace code uses synchronize rcu():
For but 2 examples:

e pid write() triggered by write to
/sys/kernel/tracing/debug/tracing/set ftrace_ pid

e ring buffer code such as ring buffer_resize()

End resultis trace-cmd record -p function_graph can take several more seconds to start

and stop recording, than it would otherwise.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies causing boot-time issues (SELinuXx)

SELinux enforcing during ChromeOS boot up invokes synchronize rcu()
[17.715904] => _wait_rcu gp

[17.715904] => synchronize_rcu

[17.715904] => selinux_netcache_avc_callback

[17.715904] => avc_ss_reset

[17.715904] => sel write_enforce

[17.715904] => vfs_write

[17.715904] => ksys_write

[17.715904] => do_syscall 64

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies causing per-cpu refcount regression

e RCU used to toggle atomic-mode and vice versa
e Can badly hurt paths that don’t really want to free memory but use call_rcu() for some other
purposes. Like suspend.
e call rcu() slow down affects percpu refcounters
e These counters use RCU when switching to atomic-mode
o _ percpu_ref switch _mode() -> percpu_ref switch to_atomic_sync().

e This call slows down for the per-cpu refcount users such as blk_pre runtime_suspend().

This is why, we cannot assume call_rcu() users will mostly just want to free memory. There

could be cases just like this, and blanket slow down of call_rcu() might bite unexpectedly.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1. Jiffies with expedited option E——

M Avg. Soc+Mem = Soc+Mem savings wrt Baseline

100.0%

40.0%

Power in Watts

2.2%

20.0%

100.0% 87.8% 84.7%
e The previous synchronize rcu() issues can be mitigated by usi g 8o.0%
while ensuring good power efficiency. o
5.3% 3.1%
H =

0.0%

e However, experiments showed that using expedited RCU with Baseline Baseline+ Baseline +

86.9%

Baseline +

RCU_NOCB RCU_NOCB+ RCU_NOCB +

Jiffies_32

e Also, the expedited option is expensive, and can affect real-tin

20k 158%
160%
140%
120% 100% 102%
100%
80%
60%
40%
20%
0%
Baseline Baseline + Baseline +
RCU_NOCB RCU_NOCB +

Jiffies_32

Kernel boot time as % of baseline

Jiffies_32 +
Expedited

141%

Baseline +
RCU_NOCB +
Jiffies_32 +
Expedited

e B RNE B2 gty logdlsd system

Latest Patches:

https://lore.kernel.orqg/all/20220819204857.3066329-1-joel@joelfernandes.org/

Summary:

e Introduce new API for lazy-RCU (call_rcu_lazy).
e Queue CBs into the Bypass list.
e Flush the Bypass list when:
o Non-Lazy CBs show up.
o Bypass list grows too big.
o Memory is low.
e Several corner cases now handled (rcu_barrier, CPU hotplug etc).

https://lore.kernel.org/all/20220819204857.3066329-1-joel@joelfernandes.org/

ESHE R B RN LR R0 Nt Y AoRdso system

] [Softirq

Intro: Life Cycle of a grace period
:

f .
Waiting for a new [synchronize_rcu]
GP relquest l

| GPthread | [Writer

(Propagate start of

(rcu_gp_cleanup sets CB exec
gp_seq of rcu_state,

all nodes)

1= rdr [aea)
Se(= rdp->¢
1 35 q

i
R Queue wake up |
GP down the TREE | 5 (2l s i
o (rcu_gp_init) % IsaGPin rcu_segcblxst_enqueue) .
E progress? | a
" HO)
Force Quiescent | |5
State (FQS) loop ASR— Propagate QS up Request a new GP -6 2
(rcu_gp_fgs_loop) TREE (rcu_start_this_gp) I w5
T 5 g’ 'g
' : 153
Are ALL QS L i =
% All CPUs done? I
(o nl:';eal'ksengzk w163 (Set Root node gsmask =) } mE‘eep |
v v |
Mark and I
Propagate GP end I : Continue -
down tree J Once CPU notlces GP is done . Softirg v

ESHE R B RN LR R0 Nt Y AoRdso system

[Tick] [Softirq

Intro: Life Cycle of a grace period

[GP thread] (Writer

ELJ DELAYE ® T

GP request .
| (|
Propagate start of 2 L{ Mark CPU QS] J P I
GP down the TREE 5 it Bhaquaci) |
(rcu_gp_init) L] - il i ueue !
= ! ony i
) i .O
Force Qmescent | |& 5
State (FQS) loop For idle CPUs Propagate QS up Request a flew GP -5 28
(rcu_gp_fqs_loop) TREE (rcu_start_jBis_gp) I'%»f
-0
I 153
Are ALL QS -
% All CPUs done? I
[marked? (Set Root node gsmask = @) J -
(root node gs_mask == @) I
v I
Mark and j i
Propagate GP end [] b :
dowpn ?ree Once CPU notices GP is done _| Softirg v

(rcu_gp_cleanup sets CB exec
gp_seq of rcu_state,

Issue 2: RCU queuing CBs on lightly loaded system
Solution 2: Delay RCU CB processing (Lazy RCU)

Wakes
—e—SCHEDULER ~ =e=TIMER —e—SCHEDULER+TIMER ALL
RCU lazy further reduces 300+ wakes s
2874
. 3000
2562
per seconds, and improves SoC 50 ,\gig\mg
5 2061
. 2 1804
package C-states residency & Power {2 1557 e
t 1500 /4-\.
L 1004
£ 1000
448 420
500
0
Baseline Baseline + RCU_NOCB Baseline + RCU_NOCB
+ RCU_Lazy
Soc+Mem Power - DAQ
M Avg. Soc+Mem Soc+Mem savings wrt Baseline
100.0% 1000%
o 87.8% 83.8%
» 80.0%
=
2 60.0%
£
S 40.0%
(;3 0
S 20.0% 12.2% 16.2%
0.0%
Baseline Baseline + Baseline +
RCU_NOCB RCU_NOCB +

RCU_Lazy

100%

80%

60%

40%

20%

0%

Package C-states
EmPC8 WPCIO

PC6

Baseline Baseline + Baseline +
RCU_NOCB RCU_NOCB +
RCU_Lazy

HPCO HPC2 mPC3

Use-case: Local video playback via
Chrome browser, VP9 1080p @ 30
fps content

Device: Chrome reference device,
AlderLake Hybrid CPU with 2
Cores (with Hyperthreading) + 8
Atoms

Issue 2: RCU queuing CBs on lightly loaded system
Solution 2: Delay RCU CB processing (Lazy RCU)

rcutop confirms callbacks are

getting queued but not executed. [EYEDETE% Queued Executed

avc_node_ free 41 0
k itimer_rcu free 5
thread stack free rcu 23
ffile_free_rcu 576
delayed put pid 44
radix_tree node rcu free 17

di callback 55
d free 55
dst destroy rcu pi
epl _rcu free 7
delayed put task struct 44
inode free by rcu 94

OO0 OO0 OO0 OO

Drawbacks and considerations

e Depends on user of call_rcu() using lazy
o If a new user of call_rcu() shows up, it would go unnoticed and negate the benefits.

e Risk of user using call_rcu_lazy() in a synchronous use case accidentally.

e Risks on memory pressure:
o Protection is enough on extreme condition?

e Helping users choose the right APl variant
o Updates to docs may help: https://docs.kernel.org/RCU/whatisRCU.html#id11

