
Make RCU do less (& later) !
Presenters:

Joel Fernandes (Google)
Uladzislau Rezki (Sony)
Rushikesh Kadam (Intel) 

Intel power data courtesy:  Sitanshu Nanavati.



Overview

● Discuss what RCU does at high-level (not how it works!).

● Discuss the 2 main issues we found:
○ On a mostly idle system, RCU activity can disturb the idleness.

■ RCU blocking the scheduler tick ON when idle.

■ RCU constantly queuing callbacks on a lightly loaded system.

● Discuss possible solutions.



What RCU does?

● RCU reader critical section protected by “read lock”

● RCU writer critical section protected by regular locks.

● Reader and writer execute concurrently.

● Writer creates copy of obj, writes to it and switches object 

pointer to new one (release ordered write).

● Writer GCs old object after waiting (update)



What RCU does?

● That’s just one use case,  there are many uses of RCU.

All use cases need same basic tools:

● Lock-less markers of a critical section (CS).

● Start waiting at some point in time (t = T0).

● Stop waiting until all readers that existed at T0 exited CS.



What RCU does?

● On a local CPU (running in kernel mode).

Upper red arrows are timer tick checking are there 
readers left? If not, report.

Lower red arrows are timer tick: have ALL CPUs 
reported? If yes, execute CB. If no, try again.

Queued a Callback (CB)

Time



What RCU does?
● On a local CPU (running in idle mode).

Upper red arrows are timer tick checking are there 
readers left? If not, report.
THESE NOT NEEDED - AS CPU CANNOT BE IN 
RCU READER CRITICAL SECTION!

Lower red arrows are timer tick: have ALL CPUs 
reported? If yes, execute CB. If no, try again.
THESE STILL NEEDED - AS local CPU has queued CB. 

Queued a Callback (CB)

Time



What RCU does?

○ You see the problem?

■ RCU can block the timer tick from getting turned off!

■ Negates power-savings of CONFIG_NOHZ_IDLE



What RCU does?

○ This happens even in user mode

○ NOHZ_FULL systems typically turn tick off. RCU can keep it on.



Issue 1: RCU keeping the scheduler tick ON when idle.
● “Local Video Playback” use-case 

has 2500+ wakes per second. A 
large chuck of the wakes result 
from RCU callbacks blocking the 
dynticks-idle mode

● RCU wakes are seen at HZ rate 
(red boxes) between graphics 
16.6ms activity (blue boxes)

● Blocks deeper Package C-states. 
Impacts power



Why was RCU keeping the tick on?

● By default RCU executes callbacks on the same CPU that queued them, in 
a softirq.

● If there are Callbacks queued , keeping the tick on ensures the CBs are 
executed in a timely fashion.



Issue 1: RCU keeping the scheduler tick ON when idle.

Possible solution:  Using CONFIG_FAST_NOHZ option

● This option permits CPUs to enter the dyntick-idle state (the state where the tick is 
turned off) even if they have CBs queued.

● Idle CPUs with callbacks are kept idle for a minimum number of jiffies before 
rechecking of the RCU state.



Solution for newer kernels:

● CONFIG_FAST_NO_HZ is removed in recent kernels.

● CONFIG_RCU_NOCB_CPU : Execute RCU CBs in per-cpu threads.

● Scheduler may or may not move threads to non-idle CPUs and is in control of 

whether CPU needs to be idle or execute callbacks.

● Both starting of new grace periods, and executing CBs are moved out of the 

softirq context and into threads.

Issue 1: RCU keeping the scheduler tick ON when idle.



● RCU callback offload unblocks 
dynticks-idle and hence reduces timer 
wakes.

● RCU callback offload does increase the 
scheduler wakes marginally, but  reduces 
total platform wakes.

● Improves Package C-states residency and 
hence SoC + Memory power.

Issue 1: RCU keeping the scheduler tick ON when idle.

Use-case: Local video playback via 
Chrome browser, VP9 1080p @ 30 
fps content

Device: Chrome reference device, 
AlderLake Hybrid CPU with 2 
Cores (with Hyperthreading) + 8 
Atoms



● Several callbacks constantly queued.  rcutop refreshing every 5 seconds

● ChromeOS login + screenoff

● Device is on battery.

Observation: ChromeOS when idle



Observation: 
ChromeOS 
Display pipeline
Display pipeline in 
ChromeOS constantly 
opens/close graphics 
buffers.

VizCompositorTh-1999  [006]  1472.325451: sys_enter_close:  fd: 0x00000033
VizCompositorTh-1999  [006]  1472.325457: sys_enter_close:  fd: 0x00000046
ThreadPoolSingl-6857  [010]  1472.325734: sys_enter_close:  fd: 0x00000025
ThreadPoolSingl-6857  [010]  1472.325743: rcu_callback:     rcu_preempt rhp=0xffff9f3edc718480 func=file_free_rcu 1
      chrome-1975  [000]  1472.344365: sys_enter_close:  fd: 0x0000002d
   DrmThread-1993  [002]  1472.344627: sys_enter_close:      fd: 0x00000044
   DrmThread-1993  [002]  1472.344844: sys_enter_close:  fd: 0x00000044
      chrome-1975  [000]  1472.345019: sys_enter_close:  fd: 0x00000046
VizCompositorTh-1999  [006]  1472.345071: sys_enter_close:  fd: 0x00000046
VizCompositorTh-1999  [006]  1472.345088: sys_enter_close:  fd: 0x00000044

kworker/10:2-2105  [010]  1472.346603: rcu_callback:     rcu_preempt rhp=0xffff9f41efa9f600 func=rcu_work_rcufn 1
 kworker/9:4-3546  [009]  1472.346603: rcu_callback:     rcu_preempt rhp=0xffff9f41efa5f600 func=rcu_work_rcufn 1
 kworker/0:4-3506  [000]  1472.346606: rcu_callback:     rcu_preempt rhp=0xffff9f41ef81f600 func=rcu_work_rcufn 1
   DrmThread-1993  [002]  1472.357990: sys_enter_close:  fd: 0x0000002e
   DrmThread-1993  [002]  1472.358005: rcu_callback:     rcu_preempt rhp=0xffff9f3eb9328000 func=file_free_rcu 1
      chrome-1975  [000]  1472.358200: sys_enter_close:  fd: 0x00000038
VizCompositorTh-1999  [006]  1472.358367: sys_enter_close:  fd: 0x0000002e
      chrome-1975  [000]  1472.358539: sys_enter_close:  fd: 0x00000044
      chrome-1975  [000]  1472.358546: sys_enter_close:  fd: 0x0000002e
      chrome-1975  [000]  1472.358548: sys_enter_close:  fd: 0x00000038
VizCompositorTh-1999  [006]  1472.358778: sys_enter_close:  fd: 0x0000002e
VizCompositorTh-1999  [006]  1472.358784: sys_enter_close:  fd: 0x00000046
ThreadPoolSingl-6857  [010]  1472.359008: sys_enter_close:  fd: 0x00000025
ThreadPoolSingl-6857  [010]  1472.359019: rcu_callback:     rcu_preempt rhp=0xffff9f3e8d28e300 func=file_free_rcu 1
      chrome-1975  [000]  1472.377594: sys_enter_close:  fd: 0x0000002d
   DrmThread-1993  [002]  1472.377825: sys_enter_close:  fd: 0x0000003f
   DrmThread-1993  [002]  1472.378043: sys_enter_close:  fd: 0x0000003f
      chrome-1975  [000]  1472.378227: sys_enter_close:  fd: 0x00000046
VizCompositorTh-1999  [006]  1472.378341: sys_enter_close:  fd: 0x00000046
VizCompositorTh-1999  [006]  1472.378356: sys_enter_close:  fd: 0x0000003f
 kworker/2:1-7250  [002]  1472.378524: rcu_callback:     rcu_preempt rhp=0xffff9f41ef89f600 func=rcu_work_rcufn 1
 kworker/0:4-3506  [000]  1472.379626: rcu_callback:     rcu_preempt rhp=0xffff9f41ef81f600 func=rcu_work_rcufn 1

kworker/10:2-2105  [010]  1472.380627: rcu_callback:     rcu_preempt rhp=0xffff9f41efa9f600 func=rcu_work_rcufn 1
   DrmThread-1993  [002]  1472.391294: sys_enter_close:  fd: 0x00000033
   DrmThread-1993  [002]  1472.391306: rcu_callback:     rcu_preempt rhp=0xffff9f3eb9328600 func=file_free_rcu 1



Observation: Logging in Android (as example)
Example: Logging during static image (Android).

Static image is important use-case for power testing on Android. The system is 
mostly idle to minimize a power drain of the platform:

● Panel refresh-rate is zero, i.e. it is stopped and power collapsed
● CPUs spend most of their time in deepest C-state
● SoC bandwidth is minimal (memory bus, CPU/cache frequencies, etc.).  

Logging does constant file open/close inducing RCU pressure when FDs get 
freed. As a side effect of such periodic light load, many wakeups happen due to 
frequent kicking an RCU-core for initializing a GP to invoke callbacks after it 
passes.



Below is a wakeup trace log of static image use-case during 30 seconds.
<wake-up-trace-log>
 rcuop/2    pid:       33   woken-up   36709      interval: min  1320     max       71837          avg  
9807
 rcuop/3    pid:       40   woken-up   36944      interval: min  1582     max       78649          avg  
9744
 rcuop/0    pid:       15   woken-up   40570      interval: min  1520     max       80442          avg  
8873
 rcuop/1    pid:       26   woken-up   40695      interval: min  1414     max       80043          avg  
8846
 rcuog/0    pid:       14   woken-up   57907      interval: min    73     max       27855          avg  
6217
 idd@1.0.   pid:     1116   woken-up   89498      interval: min   231     max    17442186          avg  
4005
 rcu_preempt pid:       13   woken-up   90203      interval: min    39     max        8505          avg  
3991
 iddd       pid:     1195   woken-up   250398     interval: min    92     max       16375          avg  
1437
<wake-up-trace-log>

A trace was taken on the ARM big.LITTLE system. It is obvious that the biggest part 
belongs to the “iddd logger” whereas a second place is fully owned by the RCU-core 
subsystem marked as red.

Observation: Logging in Android (as example)



RCU mostly invokes callbacks related to the VFS, SELinux subsystems during logging:

● file_free_rcu()
● inode_free_by_rcu()
● i_callback()
● __d_free()
● avc_node_free()

Since system is lightly loaded and a number of posted callbacks to be invoked are rather 

small, between 1-10, such pattern produce most of the wakeups (in static image use-case) 

to offload a CPU with __only__ few callbacks there.

Observation: Logging in Android (as example)



Solution 4: Observation(cont.)
Observation: Logging in Android



Home screen swipe(as example)



Home screen swipe power(~3% delta)



Issue 2: RCU queuing CBs on lightly loaded system

● Observation: When a system is relatively idle, most CBs in the system don’t 
need to be executed soon, we can in fact delay them as long as needed.

● Selectively identify frequently occurring CBs in the system that “trickle”.



Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Delay RCU processing using jiffies_till_{first,next}_fqs

● Great power savings

● Problem:
○ Causes slow down in ALL call_rcu() users globally whether they like it or not.

○ Causes slow down in synchronize_rcu() users globally.

○ Significantly regresses boot time.

jiffies_till_first_fqs & 
jiffies_till_next_fqs

= 3,3 
(default)

= 8, 8 = 16, 16 = 24, 24 = 32, 32

SoC+Memory, power savings w.r.t 
Baseline

11.1% 13.1% 13.9% 14.4% 14.2%



Solution 1: Jiffies causes massive synchronize_rcu() 
slowdown.

○ ChromeOS tab switching autotest

■ Due to  synchronize_rcu() latency increases quickly from 23 ms to 169 ms 

(with changing jiffies from 3 to 32)

○ The same evaluation with synchronize_rcu_expedited() gives us a latency of < 1 

msec at jiffies = 32

Issue 2: RCU queuing CBs on lightly loaded system



Solution 1: Jiffies increase causing function tracer issues

Several paths in ftrace code uses synchronize_rcu():

For but 2 examples:

● pid_write() triggered by write to  

/sys/kernel/tracing/debug/tracing/set_ftrace_pid

● ring buffer code such as ring_buffer_resize()

End result is trace-cmd record -p function_graph can take several more seconds to start 

and stop recording, than it would otherwise.

Issue 2: RCU queuing CBs on lightly loaded system



Solution 1: Jiffies causing boot-time issues (SELinux)

SELinux enforcing during ChromeOS boot up invokes synchronize_rcu()

[   17.715904]  => __wait_rcu_gp

[   17.715904]  => synchronize_rcu

[   17.715904]  => selinux_netcache_avc_callback

[   17.715904]  => avc_ss_reset

[   17.715904]  => sel_write_enforce

[   17.715904]  => vfs_write

[   17.715904]  => ksys_write

[   17.715904]  => do_syscall_64

Issue 2: RCU queuing CBs on lightly loaded system



Solution 1: Jiffies causing per-cpu refcount regression

● RCU used to toggle atomic-mode and vice versa

● Can badly hurt paths that don’t really want to free memory but use call_rcu() for some other 

purposes. Like suspend.

● call_rcu() slow down affects percpu refcounters

● These counters use RCU when switching to atomic-mode

○ __percpu_ref_switch_mode() -> percpu_ref_switch_to_atomic_sync().

● This call slows down for the per-cpu refcount users such as blk_pre_runtime_suspend().

This is why, we cannot assume call_rcu() users will mostly just want to free memory. There 

could be cases just like this, and blanket slow down of call_rcu() might bite unexpectedly.

Issue 2: RCU queuing CBs on lightly loaded system



Solution 1: Jiffies with expedited option

● The previous synchronize_rcu() issues can be mitigated by using expedited boot option which expedites 
while ensuring good power efficiency.

● However, experiments showed that using expedited RCU with jiffies, still causes a boot time regression. 

● Also, the expedited option is expensive, and can affect real-time workloads.

Issue 2: RCU queuing CBs on lightly loaded system



Solution 2: Delay RCU CB processing (Lazy RCU)

Latest Patches:

https://lore.kernel.org/all/20220819204857.3066329-1-joel@joelfernandes.org/

Summary:

● Introduce new API for lazy-RCU (call_rcu_lazy).
● Queue CBs into the Bypass list.
● Flush the Bypass list when:

○ Non-Lazy CBs show up.
○ Bypass list grows too big.
○ Memory is low.

● Several corner cases now handled (rcu_barrier, CPU hotplug etc).

Issue 2: RCU queuing CBs on lightly loaded system

https://lore.kernel.org/all/20220819204857.3066329-1-joel@joelfernandes.org/


Solution 2: Delay RCU CB processing (Lazy RCU)Issue 2: RCU queuing CBs on lightly loaded system



Solution 2: Delay RCU CB processing (Lazy RCU)Issue 2: RCU queuing CBs on lightly loaded system

DELAYED



RCU lazy further reduces 300+ wakes 
per seconds, and improves SoC 
package C-states residency & Power

Solution 2: Delay RCU CB processing (Lazy RCU)
Issue 2: RCU queuing CBs on lightly loaded system

Use-case: Local video playback via 
Chrome browser, VP9 1080p @ 30 
fps content

Device: Chrome reference device, 
AlderLake Hybrid CPU with 2 
Cores (with Hyperthreading) + 8 
Atoms



rcutop confirms callbacks are 
getting queued but not executed.

Solution 2: Delay RCU CB processing (Lazy RCU)
Issue 2: RCU queuing CBs on lightly loaded system



Drawbacks and considerations
● Depends on user of call_rcu() using lazy

○ If a new user of call_rcu() shows up, it would go unnoticed and negate the benefits.

● Risk of user using call_rcu_lazy() in a synchronous use case accidentally.

● Risks on memory pressure:
○ Protection is enough on extreme condition?

● Helping users choose the right API variant
○ Updates to docs may help: https://docs.kernel.org/RCU/whatisRCU.html#id11


