Linux Scheduling on Intel Performance Hybrid Architecture

Len Brown, Ricardo Neri

Intel Open Source Technology Center

Linux tasks on Intel Hybrid "Pcores and Ecores"

Fully Busy CPU

Uniform Instruction Set on all CPUs

Linux v4.9 (before ITMT)

Task Placement:1. Pcore equal to Ecore2. Pcore HT sibling

Performance variability due to random placement

Linux v4.10 - v5.15 ITMT

Task Placement:1. Pcore2. Pcore HT sibling3. Ecore

Scheduler erroneously prefers HT sibling over Ecore. Disable ITMT: # echo 0 > /proc/sys/kernel/sched_itmt_enabled

Linux v5.16 ITMT

Task Placement:1. Pcore2. Ecore3. Pcore HT sibling

Scheduler correctly spreads to Ecore before HT sibling.

ITMT Scheduler Architecture

Linux Plumbers Conference - Dublin, Ireland Sept 2022

6

Pcores are faster than Ecores¹

At ISO Frequency, for a *nominal instruction mix*

Pcore/Ecore = 1.27

1. https://edc.intel.com/content/www/us/en/products/performance/benchmarks/hot-chips-2021/

Intel Hardware Feedback Interface (HFI)

Every CPU has Performance and Efficiency "Scores"

Index	<u>CPU</u>	Performance	Efficiency	
0	0,1	56	92	56 = 1.27 * 4.4 Ghz
1	2,3	56	92	
2	4-7	30	100	30 = 1.0 * 3.0 Ghz
3	8-11	30	100	

Pcore Performance advantage depends on instructions

Performance ratio at ISO frequency:

<u>Class</u>	ISA Example	Pcore/Ecore Performance
0	SSE	1.27
1	AVX2	1.5
2	VNNI	2.0
3	PAUSE	1.0

Pcore/Ecore performance depends on Instruction mix (ISA class)

Intel Thread Director (ITD)

ITD adds (4) ISA classes to HFI

Index	<u>CPU</u>	~ ~	<u>P0</u>	<u>P1</u>	<u>P2</u>	<u>P3</u>		<u>E0</u>	<u>E1</u>	<u>E2</u>	<u>E3</u>
0	0,1		56	66	88	44	-	92	92	92	92
1	2,3		56	66	88	44		92	92	92	92
2	4-7		30	30	30	30	-	100	100	100	100
3	8-11		30	30	30	30		100	100	100	100

Benefit of running on Pcore depends on type of instructions (ISA class)

Linux Plumbers Conference - Dublin, Ireland Sept 2022

* Other names and brands may be claimed as property of others

ITD ISA Classification

Linux user clock tick:

curr->class = MSR IA32 HW FEEDBACK CHAR

Linux context switch:

HRESET

ITMT+ITD Scheduler Architecture

Linux Plumbers Conference - Dublin, Ireland Sept 2022

12

Idle Load Balance (Ecore -> Pcore)

When: partially idle: #PCORES <= #task <= #CPU

What: CPU "dst" enters idle, searches for "busy" to offload

ITMT: Pcore pull from Ecore, Ecore pull from HT, always ITD: Opportunity to break tie on which busy is "busiest" Linux Plumbers Conference - Dublin, Ireland Sept 2022

Idle Load Balance (HT -> Ecore)

When: partially idle: #PCORES < #task <= #CPU

What: CPU "dst" enters idle, searches for busiest to offload

ITMT: Pcore pull from Ecore, Ecore pull from HT, always ITD: Opportunity to break tie on which busy is "busiest" Linux Plumbers Conference - Dublin, Ireland Sept 2022

Periodic Load Balance - Live Exchange

When: partially idle or fully utilized or overutilized

What: CPU "dst1" enters periodic load balancer, searches dst2

Today: NUMA load balance live exchange (on page fault) Opportunity: ITD live exchange can increase throughput Linux Plumbers Conference - Dublin, Ireland Sept 2022

Periodic Load Balance - Pull from Queue

When: overloaded/unbalanced: #CPU < #task

What: CPU "dst" enters periodic load balancer, searches busiest to help

Today: dst selects busy, and pulls until balance reached Opportunity: ITD can break tie on which sg is busiest Linux Plumbers Conference - Dublin, Ireland Sept 2022

Periodic Load Balance - Queue Exchange

When: overloaded/balanced: #CPU < #task

What: CPU "dst1" enters periodic load balancer, searches dst2

Today: "balanced" queues are untouched Opportunity: ITD can increase throughput Linux Plumbers Conference - Dublin, Ireland Sept 2022

Task Placement:

Energy Model used as tie breaker when multiple possible Capacity Scenarios

Linux Plumbers Conference - Dublin, Ireland Sept 2022

* Other names and brands may be claimed as property of others

Why EAS is not a good match for ADL

Capacity Model Challenges

- 1. SMT
- 2. Turbo
- 3. HWP

Energy Model Challenges

- 1. SMT
- 2. Static ITD Energy table
- 3. Pcore often more efficient than Ecore

Discussion

Linux Plumbers Conference - Dublin, Ireland Sept 2022

20

ITMT SMT migration Improvement (post Linux 6.0)

- 1. Remove superfluous Jr-sibling -> Sr-sibling migrations
- 2. Remove restriction on Ecore pulling from only Jr-sibling
- 3. Remove artificial software assignment of different priority for Jr and Sr

