Linux Kernel Scheduling and
Split-LLC Architectures

Overview, Challenges, and Opportunities

Gautham R. Shenoy
K. Prateek Nayak

AMD\

together we advance_

Challenges
Issue that we have observed with scheduling on Split-LLC Architecture ‘

[AMD Official Use Only - General]

Challenges of Split-LLC

Cross LLC communication overhead in schbench

___________________ 1
|

|
Challenges with schbench ' [schbench messenger |

- schbench atlower worker countshows a {!_S_Gb?ti‘quh_ worker |
large amountofrun-to-run variancebased
on how the tasks are spread around in the
system.

- schbench prefersmessenger and worker to schbench worker and schbench worker and

be co-located on the same LLC with 99th %ile messenger on same LLC messenger on different LLCs

latencies degrading as the distance between p99 latency (normalized) = 1.00 P99 latency (normalized) = 2.50
the worker and messengerincreases.

* schbench uses Futex to signal the waiting

worker to wakeup, recording the time elapsed
betweensignaling and the worker waking up.
Wakeup from Futex doesn’thave WF_SYNC 4
flag set hence, the scheduler will not be Local L3 Cache External L3 Cache

aggressive at consolidating the messenger
and worker on the same LLC.

Figure: Variation in the tail latency reported by schbenchbased on
placement of messenger and worker.

AMDZN

3 LinuxPlumbers Conference 2022 - September 13,2022 together we advance_

[AMD Official Use Only - General]

Variance in Tail Latencies Reported

Surprising tale of consolidation

* We observe that the schbenchmessenger and worker are eventually co-located onthe same LLC, not as a result of wakeup

migration, but becauseof new-idle balance.

« During the runtime, there arises a scenario where a kworker thread triggered by schbenchand the schbench thread are placed on

the samerun queue.

+ The messenger, having just wentto sleep,will trigger a new-idle balance onthe CPU where it was running, and this will pull the
schbench workerthread towards messenger’s LLC as the kworker cannotbe migrated.

* Whenthe messengerwakesup later, it'll find the CPU it previously ran on busy and will find an idle CPUon same LLC, thus leading
to colocation of worker and messenger.

LLCO

' schbench worker is |
I Messender, ' migrated to CPU O ,
L Goest% ' ' restoring the balance | kworkerjg schbench
|| Sleep S Eit Worker
5 O " “héwidie balance . O
| 'spots an Overloaded |
. schbench \ ! Run Queue ! Run Queue of CPU 8
'messenger @ o Sogl— "7 777
| CPU CPU
| 0 8

LLC 1

I schbench . | Finds previously ran
‘ messenger . 'CPU busy and searcheSI

; waking up \for an idle CPU on same!

| LLC i
___________________________ |

(} 1 |

\\ E :

N |

%« ¥ !

/‘LO CPU |

1 |

schbhench :
worker LLCO !
|

|

|

Both tasks are placed '
on same LLC eventually .

schbench schbench
worker messenger

Figure: Series of events resulting in schebench messenger-worker consolidation

4 LinuxPlumbers Conference 2022 - September 13,2022

AMDZN

together we advance_

[AMD Official Use Only - General]
|:| CPU Running |

Challenges with Split-LLC

. CPU Running |

Inconsistencyin Stream after NUMA Imbalance Rework $ﬁn—8(tjream |
rea |
Ideal Task Placement
Challengeswith Stream and Initial Placement 77T 1
- Withthe NUMA Imbalancerework by Mel Gorman, we start Actual
exploring LLCsin the non-localNUMA node when we Placement !
have equivalentofonetask per LLCin the local NUMA O . !
node. ol % sci |[Decs ||[®ecr | ec |
- With the current logic, we can optimally place the Stream | Parent Task | |« (L:_%TO) (L1L%T1) (L1L?3T8) L"L%Tg
threads outof the box and getsame performanceas case 1S Running 1 () |
with pinning. @, (B 5C/ = 5C/ = 8C/ ‘
- However, when there is an external task running in the "o Steam 16T 16T 16T 16T
system, the currentlogic will defaultto local LLC when | T"t‘:?eaggirr? | (LLC2) || (LLC3) ||| (LLC 10) || (LLC 11) |
thereis atie in number ofidle CPUs betweenthelocal | same LLC | = a 0 u
LLCandtheidlest LLCthus leading to a pileup and Ewill degrade | 8C/ 8C/ 8C/ 8C/ :
performance degradation of 8-12%is observed between | performance 16T 16T 16T 16T I
good runs and bad runs. (LLC4)) (LLCS) (LLCA2) || (LLC13) |
- Beforethe NUMA Imbalance rework, the Stream results B, = 8c) E sc; | g |
were consistently poor as a result of the fact that we were 16T 16T 16T 16T -
never exploring the LLCs fromthe non-local NUMA (LLC 6) || (LLC7) (LLC 14) || (LLC 15)
node, and we always had at leastone LLC with morethan

one Stream thread. Figure: Two Stream treads being placed on the same LLC as a result of

bias towards local LLC when there is a tie in number of idle CPUs in
the local LLC and the idlest LLC
AMDZ

5 Linux Plumbers Conference 2022 - September 13,2022 together we advance_

[AMD Official Use Only - General]

How to detect If the Workloads are Bandwidth Intensive? (like Stream)

Lack of cached metrics to spotbandwidth-oriented task

L4 The bIaS toward |OC8.| g rOU p When bOth the |OC&| grOUp f'H_C}_a;l;_O% _a_t|_e_’i : Select gi;)up ‘irlih highesthnu:b?r of idli EEUSb ile.iould alzo
and the |d|eSt group have Same n u m ber Of |d Ie CPUS |S : bllas tlowards : * up 1p:hat the group has less spare capacity but finally more
! ocal grou [* idle s which means more opportuni o run task.
unfavorablefor workloads such as Stream. RS S e e prottiny e e e
. . . . if (local_sgs.idle_cpus »>= idlest_sgs.idle_cpus)
- Going by the utilization to break the tie helped to an returm oL
extent but was not foolproof because:
Kernel threads such as kcompactd bumped up the utilization e __ i we use aroun. Ut T
.. . ’ ,- . ; 490, | group_util |
there by biasing towards the local group yet again. \idle_cpus:120 idle_cpus:120; " orgroup_load asa |
Workloads such as hackbench which preferred consolidation " group_util: 11_21?""""ch?u_p__hEil_:_Afbé?_i*—"i Wgecggg‘z?\‘,i”?e;‘;gisciéni
regressed. igroup load: 2249 group_load: 933 | | Inbenchmarks that |
. : : e e L -——--.ZTT. ' benefit from being |
Stream has a large memory footprintright from_the] B 0 0 | onlocalnode |
momentthe Stream threads are forked. Can metricssuch 2 | = | | "tv7777t7tt77ooor
Ss the mem??r/]folotprllntbe Ufhed a; a; prllc.)tx%{ forbtht(ta cache | Each Stream thread, |
usyness ot tne IoCal group therepy racilitating oetier has a large memory footprint !
spread? i p->mm->total_vm: 773273 ! = = = =
4 Hackbench-runtime (lessis better)
of Prefer Choose Difference L [L]
groups Local Group Based on group_util (%)
1 1.00 1.02 -2%] I] B
2 1.00 0.99 +1%
4 1.00 1.00 0%
Socket 0 Socket 1
8 1.00 1.02 -2% (Local NUMA Node) (Non-local NUMA Node)
16 1.00 1.06 -6% Figure: Potential tie breaking metrics

AMDZN

6 LinuxPlumbers Conference 2022 - September 13,2022 together we advance_

[AMD Official Use Only - General]

Go to
. . T R 1 sleep
Challenges with Split-LLC LB TR vemng
tbench: Thundering Herd Scenario signal . .
4 ' NUMA Imbalance !
! ! threshold: 8 !
After receiving T
: ! tbench tasks forked
i i signal, all task * DT :
Thunderingherdintbench wakeup at once rDDDDDDDD
 tbenchtasks have a peculiar initial wakeup behavior ?Vermﬁkﬂnl\ng tge ! P R -
where the tasks, once placed onthe CPU will wake O LLCs on it
up and soon go to sleep. L
With the initial wakeup path depending on the sl
number of idle CPUs, this pattern is not favorable as 8C/ 8C/ 8C/ 8C/
the task that goes to sleep soonafter waking up willnot "=~ 16T 16T 16T 16T
change the number of idle CPUs for long. (LLCO)y j eten (LLE8) | ttes
With only few tasks runningin the system, the fg ?gT/ fg ?gT/
NUMA imbalance threshold is rarely crossesand (LLC2) | (LLC3) (LLC 10) | (LLC 11)
mosttasks will be placed onthe local NUMA node.
Whenthe tasks wakeup later, they storm the small 18§T’ ?ST/ 18§T’ ?ST/
LLC and thus end up overloadingit, later depending (LLC 4) || (LLC5) (LLC 12) || (LLC 13)
on the load balancer to reach an optimal state later.
8C/ 8C/ 8C/ 8C/
We've observedthat with a more balanced initial 16T 16T 16T 16T
placement, we can not only reduce the number of (LLC®) || (LLCT7) (LLC 14) || (LLC 15)
migrations required later to reach an optimal stable Socket 0 Socket 1

(Local NUMA Node) (Non-local NUMA Node)

state, but also improve tbench throughput in several

different cases. Figure: lllustration of tbench initial wakeup behavior leading to

thundering herd scenario
AMDZ1

7 Linux Plumbers Conference 2022 - September 13,2022 together we advance_

[AMD Official Use Only - General]

tbench Initial Placement Imbalance

Current Situation and Consequences

Initial LLC Distribution
+----- e R e T T +

| LLC | Task Spawn Count | % of total task | Overloaded?|

N NN W W R, NN R

B B B OV 0N OV D WN RO
N RO

[T S Y

R W NW

=
D

15

8 LinuxPlumbers Conference 2022 - September 13,2022

=
=

vi B, N N O P © W

Overloaded |

Overloaded |

Initial NUMA Distribution

R ommm e mmm oo +
| NUMA Node | Task Spawn Count | % of total task |
R e Fmm e Fommm e +
| 0 | 23 | 17.96 |
| 1 | 105 | 82.03 |
R Fmmmm oo Fommm e +

|

|

|

|

\"

NUMA Distribution after 10000 Migrations

R mmm e dmmm o +
| NUMA Node | Task Spawn Count | % of total task |
dommmm - e T +
| 0 | 67 | 52.34 |
| 1 61 | 47.65 |
R e R +

Note: We’ve observed the number of migrations come down
by 85% with a more optimal initial placement and an
improvement of 20% in the reported bandwidth for 64 client
case and an improvement of 12% in reported bandwidth for
128 client case on a dual socket system featuring 3'¢
Generation EPYC processors AMD

together we advance_

[AMD Official Use Only - General]

Why do we face these challenges only on S

Often, a unified LLC architecture will
have a greaternumber of CPUs attached
to same L3 cache comparedto the Split-
LLC offerings. With the current scheduler
heuristics in the wakeup path, there is a
higher probability that communicating
tasks get consolidated onto CPUs
belongingtosameLLC.

Crossingan LLCboundary ina unified
LL C architecture almost always results in
crossing the NUMAboundaries. With
optimizations such as Auto NUMA in place,
there is a greater chance for the task to be
placed on the mostoptimal NUMA node
and hence on the mostoptimal LLC.

Thus, with the current scheduler heuristics,
the probability of getting the placement
decisionincorrectis lower on unified
LLC architectures as opposed to onthe
split LLC architectures.

9 LinuxPlumbers Conference 2022 - September 13,2022

nlit-LLC Architectures?

Core || Core || Core || Core || Core | Core || Core || Core
Core | Core || Core || Core || Core || Core || Core || Core
Core | Core || Core || Core Shared L3 Cache
Shared L3 Cache Core | Core || Core || Core || Core || Core || Core || Core
Core || Core || Core || Core Core || Core || Core || Core || Core || Core || Core || Core

——————————————— bl
|
|

! Less opportunity
! to consolidate
| tasks on same LLC :

-———

|
| e | e
|
|
| LLC || LLC
|
|
i LLC || LLC
|
|
3 LLC || LLC
S|
NUMA Boundary

(Multiple LLC on same NUMA Node)

More opportunity
to consolidate

9
|
|

' tasks on same LLC |

LLC

NUMA Boundary

Figure: Limitations of Split-LLC
architectures when comparing
with a unified LLC design.

(Each LLC is itself is on
a separate NUMA Node)

AMDZN

together we advance_

Potential solution AMD A

[AMD Official Use Only - General]

Userspace Hinting for Scheduler

Defining expected scheduler behavior for the workload

Peter Zijlstra’s case for hints based on workload characteristics

(https:/llore .kernel.org/lkm/YWVwnsrZWrnWHaogN @hirez.programming.kicks-ass.net)

11 Linux Plumbers Conference 2022 - September 13,2022

I'm also thinking that adding more heuristics isn't going to improve the

si

For the past # of years people have been talking about extendng the task

mo

If
th

tuation lots.

del for SCHED NORMAL, latency nice was one such proposal.

we really want to fix this proper, and not make a bigger mess of
ings, we should look at all these various workloads and identify

what specifically they want and *why¥*.

On
an

The extention must be hint only, we should be free to completely ignore

ce we have this enumerated, we can look at what exactly we can provide

d how to structure the interface.

it.

Th

e things I can think of off the top of my head are:

tail latency; prepared to waste time to increase the odds of running
sooner. Possible effect: have this task always do a full
select _idle sibling() scan.

(there's also the anti case, which I'm not sure how to enumerate,
basically they don't want select_idle sibling()}, just place the task

wherever)

non-interactive; doesn't much care about wakeup latency; can suffer
packing?

background; (implies non-interactive?) doesn't much care about
completion time either, just cares about efficiency

interactive; cares much about wakeup-latency; cares less about
throughput.

(energy) efficient; cares more about energy usage than performance

AMDZN

together we advance_

https://lore.kernel.org/lkml/YVwnsrZWrnWHaoqN@hirez.programming.kicks-ass.net

[AMD Official Use Only - General]

Userspace Hinting for Scheduler

Exploration : RFC Patches at

Task placements and movementdecisions are taken by the scheduler only at
the following points:

During fork() / exec()
During subsequenttask wakeup.
During load balancing.

« Wecan have a hint for each decision pointto influence task placementin a
desired way.
- Hints explored forinitial placement:
FORK _AFFINE: Wakeup close to parent
FORK_SPREAD: Spread regardless of NUMA imbalance threshold restriction. Use
utilization as a tie breaking metric when number of idle CPUs in groups are same.
- Hints explored forsubsequentwakeup:
WAKE_AFFINE: Wakeup close to waker
WAKE_HOLD: Wakeup on same LLC where the task previously ran

« Hints areignored if the preferred LLC or the currently running LLCs are
overloaded. Scheduleris aware if the task is on a preferred LLC and will try
to avoid moving the elsewhere during load balancing if LLC has capacity.

- Forauser consumable APIthese hints needsto be further abstracted and

possiblybe paired with other optimal tunable values that favor the
characterized workload.

12 Linux Plumbers Conference 2022 - September 13,2022

where | previously

—_—— e e o e e e e = =

r-T T T T T I
|

| Hint: Wake me ! -
'on waker's LLC.

___________ |

Hint: Wake me |
onsame LLC !
|

task’s wakeup behavior

Figure: Lowlevel hints that define

AMDZN

together we advance_

https://lore.kernel.org/all/20220910105326.1797-1-kprateek.nayak@amd.com/

[AMD Official Use Only - General]

Userspace Hinting : schbench

4 schbench (correcthints)—tail latency (Less is better) 4 schbench (incorrecthints) — tail latency (Less is better)
of Default Hint: FORK _AFFINE Improv. # of Default Hint: FORK_SPREAD Improv.
clients (Normalized) (Normalized) (%) clients (Normalized) (Normalized) (%)
1 1.00 0.86 +14% 1 1.00 2.04 -104%
2 1.00 0.91 +8% 2 1.00 1.82 -82%
4 1.00 0.90 +10% 4 1.00 1.16 -16%
8 1.00 0.77 +23% 8 1.00 1.06 -6%
16 1.00 0.86 +14% 16 1.00 0.99 +1%
32 1.00 0.92 +8% 32 1.00 1.00 +0%
64 1.00 0.97 +3% 64 1.00 1.00 +0%
128 1.00 0.96 +4% 128 1.00 0.98 +2%
256 1.00 1.03 -3% 256 1.00 0.99 +1%

All benchmarks were run on a dual socket (2 x 64C/128T) system featuring 34 Generation EPYC processors
running modified kernel based on the baseline tip:sched/core at sched-core-2022-08-01

AMDZN

13 Linux Plumbers Conference 2022 - September 13,2022 together we advance_

[AMD Official Use Only - General]

Userspace Hinting : Hackbench and tbench

4 Hackbench (correct hints) — runtime (lessis better) 4 Hackbench (incorrect hints) —runtime (less is better)
of Default Hint: FORK_AFFINE + WAKE_AFFINE Difference # of Default Hint: FORK_SPREAD Difference
clients (Normalized) (Normalized) (%) clients (Normalized) (Normalized) (%)
1 1.00 0.97 +3% 1 1.00 1.03 -3%
2 1.00 0.98 +3% 2 1.00 1.06 -6%
4 1.00 0.98 +2% 4 1.00 0.98 +2%
8 1.00 0.96 +4% 8 1.00 0.98 +2%
16 1.00 0.96 +4% 16 1.00 0.98 +2%
4 tbench (Correct Hint) — Bandwidth (More is better) 4 tbench (Wrong Hint) — Bandwidth (More is better)
of Default Hint: FORK_SPREAD Difference (%) # of Default Hint: FORK_AFFINE Difference (%)
clients (Normalized) (Normalized) clients (Normalized) (Normalized)
1 1.00 0.98 -2% 1 1.00 1.00 0%
2 1.00 0.97 -3% 2 1.00 0.98 -2%
4 1.00 0.99 -1% 4 1.00 1.00 0%
8 1.00 1.03 +3% 8 1.00 0.93 -7%
16 1.00 1.08 +8% 16 1.00 0.95 -5%
32 1.00 1.18 +18% 32 1.00 0.93 -7%
64 1.00 1.24 +24% 64 1.00 0.78 -22%
128 1.00 1.12 +12% 128 1.00 0.64 -36%
256 1.00 1.00 0% 256 1.00 0.45 -55%

All benchmarks were run on a dual socket (2 x 64C/128T) system featuring 34 Generation EPYC processors
running modified kernel based on the baseline tip:sched/core at sched-core-2022-08-01

AMDZN

14 Linux Plumbers Conference 2022 - September 13,2022 together we advance_

Discussion AMD‘
What are your thoughts? What is the way ahead? ‘

AMD Y

| Acknowledgements

We would like to thank the Linux Kernel Scheduler community for its continued efforts at optimizing the Linux
Kernel Scheduler for Split-LLC Architectures and testing the changes on various hardware configuration out
there.

[AMD Official Use Only - General]

COPYRIGHT AND DISCLAIMER

©2022 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC and combinations thereof are trademarks of Advanced Micro Devices, Inc. Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names used in this publication are for identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEARIN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMDZN

17 Linux Plumbers Conference 2022 - September 13,2022 together we advance_

Backu '1
Data and acE:)ounts to aid the discussion A M D ‘

[AMD Official Use Only - General]

Challenges from the Past

Modelling the MC Domain

Why does it matter?

/

- Without a properly modelled MC domain, tasks that are waking

up, would have been placed on an idle CPU without
consideringif the CPU is froma cache-hotLLC.

Solution
- Witha MC domain modelledto representagroup of CPUs

sharingthe same L3, we can target the CPUs froma cache
hot LLC during the task wakeup.

The CPU search space forsubsequenttask wakeup has been
narrowed down to relevant cache-hot CPUs.

Side Effects

If a latency sensitive task, which doesn’'t benefitfrom cache-
hotness, targets an LLC with no idle CPUs, it'll be queued on
abusyrun queue until the load balancer is triggered and the
task is migrated to an idle CPU. Without the restriction of an
MC Domain, the task could have found an idle CPU on the
system and wouldn’t have been dependenton the load
balancer to find an idle CPU to run on.

20 Linux Plumbers Conference 2022 - September 13,2022

R
B
L]
LI
LI
L
R
EEEEE e
EEE
L]
L]
LR
EE e
L]
EEE e
L

Task
Waking
Up
8C/ 8C/
16T 16T
8C/ 8C/
16T 16T
8C/ 8C/
16T 16T
8C/ 8C/
16T 16T

Previously: Entire Socket
128 Possible CPUs

Figure: MC Modelling in EPYC Processors

Now: Cache Hot LLC
16 Possible CPUs

AMDZN

together we advance_

[AMD Official Use Only - General]

Challenges from the Past

Consequence of not having an MC Domain

4 hackbench-runtime (lessis better)

of tip

clients (Normalized)

tip +

CONFIG_SCHED_MC=n

(Normalized)

Improvement
(%)

of

tip

4 tbench-Bandwidth (Moreis better)

tip +

Improvement

1 1.00 1.78 -78% clients (Normalized) CONFIG_SCHED MC=n (%)
(Normalized)
2 1.00 1.57 -57%
- 0,
4 1.00 1.45 -45% 1 1.00 0.77 23%
8 1.00 1.46 -46% 2 1.00 0.82 -17%
16 1.00 1.70 -70% 4 1.00 0.91 -9%
_ i 8 1.00 0.90 -10%
4 Stream-Bandwidth (moreis better)
of tip tip + Improvement 16 1.00 0.93 1%
clients (Normalized) CONFIG_SCHED_MC =n (%) S
(Normalized) 32 1.00 0.94 -6%
1 1.00 0.57 -43% 64 1.00 1.02 +2%
- 0,
2 1.00 0.55 45% 128 1.00 1.25 +25%
4 1.00 0.50 -50%
: : +119
8 1.00 0.51 -49% 256 1.00 1.1 11
All benchmarks were run on a dual socket (2 x 64C/128T) system featuring 3'4 Generation EPYC processors
running modified kernel based on the baseline tip:sched/core at sched-core-2022-08-01
AMD 1
21 LinuxPlumbers Conference 2022 - September 13,2022 together we advance_

[AMD Official Use Only - General]

Side Effects

Consequence of limiting search space

4 tbench-Bandwidth (Moreis better) 4 schbench —tail latency (Less is better)
of tip tip + Difference

of tip tip + Difference
workers (Normalized) CONFIG_SCHED MC=n (%)
(Normalized)

clients (Normalized) CONFIG_SCHED MC=n (%)
(Normalized)

1 1.00 0.77 -23%

2 1.00 0.82 -17%

4 1.00 0.91 -9%

8 1.00 0.90 -10%

16 1.00 0.93 -1%

32 1.00 0.94 -6% 32 1.00 0.99 +1%

64 1.00 1.02 +2% 64 1.00 1.03 -3%
128 1.00 0.99 +1%
256 1.00 0.99 +1%

All benchmarks were run on a dual socket (2 x 64C/128T) system featuring 3"4 Generation EPYC processors
running modified kernel based on the baseline tip:sched/core at sched-core-2022-08-01

AMDZN

22 LinuxPlumbers Conference 2022 - September 13,2022 together we advance_

[AMD Official Use Only - General]

Why schbench improves after disabling CONFIG_SCHED_ MC?

- Following sched tracepoints can be enabled to observe the reason for the improvements:
« sched_wakeup_new:To verify the LLCs where the tasks are initially places
- sched_waking: To verify if a migration is a wakeup migration or a load balancer migration
- sched_wakeup: To verify if a migration is a wakeup migration or a load balancer migration
- sched_migrate_task: To track task movement through out the system

« Without the MC Domains to detectthe split-LLC design, the NUMA imbalance value is now 16 for the dual socket system.

- More often than not, most schbenchthreads are placed on the same LLC

<ov 0 >-4272 [219] d.2s
<...>-4274 [221] d..2s
<o .>-4275 [222] din2e
<idle>-0 [221] dN.2.
<idle>-0 [221] d.h3.
<idle>-0 [221] dNh4.
<...0>-4274 [221] dii2a
<idle>-0 [222] dN.2.

23 Linux Plumbers Conference 2022 - September 13,2022

275.
275.
275.
275.
275.
275.
275.
275,

047778
047920:
077982
077987
144453
144455
144463:
144468:

sched_wakeup_new:
sched_wakeup_new:
sched_waking:
sched_wakeup:
sched_waking:
sched_wakeup:
sched_waking:
sched_wakeup:

Without modelling the LLC, !

the tasks can be placed on :

any CPU of local socket and .
they are very often placed on |

| the same LLC coincidentally | !

comm=schbench
comm=schbench
comm=schbench
comm=schbench
comm=schbench
comm=schbench

pid=4274
pid=4274
pid=4274
pid=4274
pid=4275
pid=4275

prio=120
prio=120
prio=120
prio=120
prio=120
prio=120

comm=schbench pid 4274 prio 120 target_cpu=221

target_cpu 221
target_cpu=221
target_cpu=221
target_cpu=221
target_cpu=222
target_cpu=222

Load Balancer will not pull
the tasks across NUMA
boundaries there are no

MC groups to maintain the

balance and the tasks will
continue to stay where
they are initially placed

Messengeris
placed onLLC 11

! ' placed on LLC 11

Worker is also

AMDZN

together we advance_

[AMD Official Use Only - General]

Challenges from the Past

NUMA Imbalance

Why does it matter?

With a generous threshold of 25% of total CPUs in the
sched domain with SD_NUMA flag set, a dual socket
offering wouldn’'t have placed any task initially on an
external NUMA node until the threshold is crossed.

Initial
Placement

Previously: Currently:
Prefer local NUMA node Prefer local NUMA node
until 64 task are running on it until 8 tasks are running on it
NUMA Node 0 NUMA Node 1 NUMA Node 0 NUMA Node 1

Bandwidth oriented workloads, suchas Stream, tooka %E%g%g%g %g%g%g%g . . o o
huge toll on performance due to the inevitable piling EEEEREEEleEE e 16T 16T 16T 16T
up of tasks on same LLC leading to cache contention. EREEREERlEE el oo i us) || (LLC)) (LLCY)
ENEEEEEEEEE e
OO0 (B0 ng/ ng’ fg% ng’
Solution %g%gﬂﬁgg HE’BB%%%% (LLc2) || (LLesy ||| e 10y || wLe 11)
With Mel's NUMA imbalance rework, the threshold for EEEEEEEEfEEE R EEN
split-LLC architectures is setto numberof LLCs in %%ED]%%EH% %%%%%E%% ?54 ?6%’ fGCT/ ?54
NUMA nodes, the Stream threads are placed ideally EnEEEEEElnEEEEEEE (LLC4) | (LLC5) ||| (LLC 12) || (LLC 13)
right from the start. R I I O
e AR NIERR
Side Effects EEEEEEEE|EEEEEEEE (LLe ey || (tLe 7 || || (Le 14) || (LLc 15)

Communicating tasksarenow spread across NUMA
boundaries early onthus relying on subsequent
wakeups fortask consolidation.

With lower imbalance threshold, the initial placement of
Stream threads is more sensitiveto external tasks
running in system and can cause run-to-run variance.

24 Linux Plumbers Conference 2022 - September 13,2022

Previously: NUMA Imbalance = 64
(25% of the total CPUs in the sched domain)

Currently: NUMA Imbalance = 8
(Number of LLCs in each of the NUMA Node)

We would like to thank Mel Gorman, and everyoneinvolved in development,
discussion,and testing of the NUMA Imbalance rework.

AMDZN

together we advance_

[AMD Official Use Only - General]

Challenges from the Past

NUMA Imbalance Rework

Following are the results comparing the results of Stream on dual socket 2 x 64C/128T system featuring
3'Y Generation AMDEPYC processors before and after Mel's rework:

Stream (10runs) (NPS1) — Bandwidth (moreis better) Stream (100runs)(NPS1)-Bandwidth (moreis better)

Stream Before After Difference Stream Before After Difference

Kernel Rework Rework (%) Kernel Rework Rework (%)
(Normalized) (Normalized) (Normalized) (Normalized)

Copy 1.00 1.33 +33% Copy 1.00 1.70 +70%

Scale | 1.00 1.70 +70% Scale | 1.00 1.69 +69%

Add 1.00 1.70 +70% Add 1.00 1.79 +79%

Triad 1.00 1.70 +70% Triad 1.00 1.74 +74%

Stream (10runs) (NPS2) — Bandwidth (moreis better)

Stream (100runs) (NPS2) — Bandwidth (moreis better)

Stream Before After Difference Stream Before After Difference
Kernel Rework Rework (%) Kernel Rework Rework (%)
(Normalized) (Normalized) (Normalized) (Normalized)

Copy 1.00 2.67 +167% Copy 1.00 2.71 171%

Scale 1.00 3.46 +246% Scale 1.00 2.47 147%

Add 1.00 3.35 +235% Add 1.00 2.67 167%

Triad 1.00 3.37 +237% Triad 1.00 2.59 159%

AMDZ1
25 LinuxPlumbers Conference 2022 - September 13,2022 together we advance_

[AMD Official Use Only - General]

Challenges from the Past

Search latency in abusy LLC (Thankyou Chen Yu!)

Why does it matter?

« Inthe absence of an idle corein an LLC, the Stop Idle
Search algorithm previously used the average LLC scan
costand amount of time a CPU was idle to limit the search
space for an idle CPU with a lower limit setto 4.

- The metric was not only inaccurate but also led to wasted
search effortwhen LLC is fully loaded.

Solution

« Withthe SIS_UTIL algorithm, we can better estimate how idle
an LLC is based onits utilization and limit the search more
accurately.

« Theinitially proposedlinear function was not optimal for
split-LLCs.

- Based on the feedbackin the community, a quadratic
function was adopted, which allowed for a larger search of
the LLCspacewhen LLCwas less utilized and cut off the
idle CPU searchwhen LLC was overloaded.

« With SIS_UTIL algorithm, the run-to-run variance observed
in tbench when system s fully loaded disappearedand a
stable 79% improvementwas observed forthe same.

26 Linux Plumbers Conference 2022 - September 13,2022

Task
Waking Up

Task
Waking Up

Task
Waking Up

Fully Busy LLC

Worst Case Scenario: 16 CPUs searched

S

S_UTIL Minimum Cutoff: 0 CPUs searched

| Queueon
| the CPU |
| where we |
| started the |
| search from
1 if we fail to |

I find an idle :

|
d

| SIS_UTIL will

| directly queue
, the task on the
(first CPU if there
'is higher chance
' of not finding

' an idle CPU

We would like to thank Chen Yu, and everyone involvedin development,

discussion,and testing of the SIS _UTIL algorithm.

AMDZN

together we advance_

[AMD Official Use Only - General]

schbench: Tracing events leading to variation in tail latencies

Verifying the timeline

The described scenario can be confirmed by enabling the following schedtracepoints:

- sched_wakeup_new:To verify the LLCs where the tasks are initially places

- sched_waking: To verify if a migration is a wakeup migration or a load balancer migration
- sched_wakeup: To verify if a migration is a wakeup migration or a load balancer migration
- sched_migrate_task: To track task movementthrough out the system

: Dependlng on how long it takes for | I schbench messenger.
Inew -idle balance to consolidate the: I is placed on LLC 6 .
i two tasks, the 99th %ile latencies e
|____tendlovayalot /
<.00>=4521 [@39] d..2. 4199.742324: sched_wakeup_new: comm=schbench pid=4523 prio=120 target_cpu=176 T Sehbonch workar !
<...>-4523 [176] d..2. 4199.742530: sched_wakeup_new: comm=schbench pid=4524 prio=120 target_cpu= 063<—I is placed on LLC 7 :
schbench-4524 [e63] d..2. 4199.772654: sched_waking: comm=schbench pid=4523 prio=120 target_cpu=176 @~~~ ~~7-°7 7777
<idle>-® [176] dNh2. 4199.772685: sched_wakeup: comm=schbench pid=4523 prio=120 target_cpu=176
schbench-4524 [e63] d..2. 4200.432480: sched_waking: comm=schbench pid=4523 prio=120 target_cpu=176 I kworker and schbench task |
<idle>-o [176] dNh2. 4200.432490: sched_wakeup: comm=schbench pid=4523 prio=120 target_cpu=176 4—’-7_Vgafe_u_p_og the same CPU |
<idle>-© [176] dNh5. 4200.432493: sched_wakeup: comm=kworker/176:2 pid=4494 prio=120 target_cpu=176

L schbench-4524 [e63] d..2. 4200.432499: sched_migrate_task: comm=schbench pid=4523 prio=120 orig_cpu=176 dest_cpu= 631-\| new-idle balance will |
| pull task to the CPU |

ey |
<idle>-© [e63] d.h3. 4200.497745: sched_waking: comm=schbench pid=4523 prio=120 target_cpu=063 1 where other schbench

A . : 'was previously running |
<idle>-© [663] dNh4. 4200.497752: sched_wakeup: comm=schbench pid=4523 prio=120 target_cpu=e63 (TN 7207 73
<...>-4523 [e63] d..2. 4200.497763: sched_waking: comm=schbench pid=4524 prio=120 target_cpu=@63 oo oo~ 1
<...>-4523 [063] d..2. 4200.497764: sched_migrate_task: comm=schbench pid=4524 prio=120 orig_cpu=63 dest_cpu=184 :\Nl?zgéz"{h"‘éogg&“ﬁ;@g :‘tp'
<idle>-© [184] dNh2. 4200.497797: sched_wakeup: comm=schbench pid=4524 prio=120 target_cpu=184

, previously ran busy and
1 finds an idle CPU in the
|

Lo samellt .. AMDZ

27 LinuxPlumbers Conference 2022 - September 13,2022 together we advance_

[AMD Official Use Only - General]

MM Statistics to Influence Initial Task Placement

Predicting Task Behavior from Memory Footprint

Incoming
Task

Incoming

Initial Task Placement Strategy Task

- Usetotal numberof pages allocated by a
task as a proxyforthe LLC utilization by
the task.

« Mark an LLC asoverloaded ifit has no
moreidle CPUs or if the sum of memory
footprintofthe tasksrunningisthe LLCis T TIITTITIT e .
4 times the size ofthe LLC.

+ Use the best-fit algorithm to bias the task |

Memory
Footprint

Memory
Footprint

placement of incoming task towards an LLC
with the smallest memory-hole that can

fulfil the memory requirementofthe | __________ : | Select LLC |

Overloaded Overloaded Overloaded
(idle_cpus: 5) (idle_cpus: 5) (idle_cpus: 3)

incoming task without overloading. ot spar. - wih most
| ¢ \ ! number of
« Incaseall LLCs are overloaded or cannot __capacity . ' idle CPUs |
accommodate the memoryfootprintofthe T T e |
incoming task, usethe currentlogic based | ! ! |
on numberofidle CPUs. In case of a tie : | ! :
betweenthe number of idle CPUs, the total ! c | | |
i TRp ! an Willlead to | . ;
memory footprlnftoftasks_runnlng In the ' Accommodate Overloading " Heavily sighty | .
LLCis used as a tie-breaking metric. (it casnef:c:oLrh?néZie | Overloaded Overloaded Sel;actdslicg;;r:_tll_yC
lmmmmmmmmmm e overloade

the task

Figure: lllustration of task placementstrategy basedon ~ AMDZ
28 LinuxPlumbers Conference 2022 - September 13,2022 memoryfootprlnt of task running In an LLC together we advance_

[AMD Official Use Only - General]

MM Statistics for Initial Task Placement

hackbench-runtime (lessis better) Stream —Run to Run Variance (less is better)
of Default Logic MM Statistics Rework Difference (%) Stream Default MM Statistics Difference (%)
groups (Normalized) (Normalized) Kernel Logic Rework
(Normalized) (Normalized)
1 1.00 0.93 +6%
Copy 1.00 0.38 -63%
2 1.00 0.97 +3%
Scale 1.00 0.40 -60%
4 1.00 0.97 +3% ’
- 0]
3 1.00 0.94 6% Add 1.00 0.40 60%
tbench —Bandwidth (Moreis better) schbench —tail latency (Less is better)
of Default MM Statistics Difference # of Default MM Statistics Difference
clients Logic Rework (%) workers Logic Rework (%)
(Normalized) (Normalized) (Normalized) (Normalized)
1 1.00 1.01 +1%
* Note: tbench regresses - 1 1.00 0.69 +31%
at higher worker count as 2 1.00 101 % 2 1.00 0.57 +43%
4 1.00 0.96 -4%
al tas,ks wake_ up on 4 1.00 0.66 +33%
parent’s LLC since we 8 1.00 1.02 +2%
. . +309
?nly agcoufnt the memc;(ry 16 1.00 1.04 +4% 8 199 0.70 0%
0,
ootprint of running tasks - Lo0 Lol 1% 16 1.00 0.78 +22%
and the tbench tasks 32 1.00 0.88 +12%
g 64 1.00 1.02 +2% : :
sleep soonafter the initial " 100 0.94 ol
wakeup thus leading to 128 1.00 1.04 +4% : : oo
Overloading_ 256 1.00 0.76 -249% * 128 1.00 0.99 +1%
256 1.00 0.97 +3%
. AMD 1
29 Linux Plumbers Conference 2022 - September 13, 2022 All benchmarks were run on a dual socket (2 x 64C/128T) system featuring together we advance_

3d Generation EPYC processors running modified kernel based on the baseline tip:sched/core of 5.17.0-rc5

[AMD Official Use Only - General]

Userspace Hinting : schbench with Two Level Wakeup

All benchmarks were run on a dual socket (2 x 64C/128T) system featuring 3"4 Generation EPYC processors
running modified kernel based on the baseline tip:sched/core at sched-core-2022-08-01

30 LinuxPlumbers Conference 2022 - September 13,2022

4 schbench (correcthints)—tail latency (Less is better)

of Default Hint:FORK_AFFINE+ Difference
clients (Normalized) WAKE_HOLD + (%)

WAKE_WIDE

(Normalized)
1 1.00 0.81 +19%
2 1.00 0.96 +4%
4 1.00 1.00 +0%
8 1.00 0.91 +9%
16 1.00 0.95 +5%
32 1.00 1.00 +0%
64 1.00 0.93 +7%
128 1.00 0.97 +3%
256 1.00 0.96 +4%

AMDZN

together we advance_

