
Linux Kernel Scheduling and

Split-LLC Architectures

Gautham R. Shenoy

K. Prateek Nayak

Overview, Challenges, and Opportunities

Challenges
Issue that we have observed with scheduling on Split-LLC Architecture

3 |

[AMD Official Use Only - General]

Challenges of Split-LLC
Cross LLC communication overhead in schbench

Challenges with schbench

• schbench at lower worker count shows a
large amount of run-to-run variance based
on how the tasks are spread around in the

system.

• schbench prefers messenger and worker to

be co-located on the same LLC with 99th %ile
latencies degrading as the distance between
the worker and messenger increases.

• schbench uses Futex to signal the waiting
worker to wakeup, recording the time elapsed

between signaling and the worker waking up.
Wakeup from Futex doesn’t have WF_SYNC
flag set hence, the scheduler will not be

aggressive at consolidating the messenger
and worker on the same LLC.

Linux Plumbers Conference 2022 - September 13, 2022

Figure: Variation in the tail latency reported by schbenchbased on

placement of messenger and worker.

4 |

[AMD Official Use Only - General]

Variance in Tail Latencies Reported
Surprising tale of consolidation

• We observe that the schbenchmessenger and worker are eventually co-located on the same LLC, not as a result of wakeup

migration, but because of new-idle balance.

• During the runtime, there arises a scenario where a kworker thread triggered by schbenchand the schbench thread are placed on
the same run queue.

• The messenger, having just went to sleep, will trigger a new-idle balance on the CPU where it was running, and this will pull the
schbench worker thread towards messenger’s LLC as the kworker cannot be migrated.

• When the messenger wakes up later, it’ll find the CPU it previously ran on busy and will find an idle CPU on same LLC, thus leading
to colocation of worker and messenger.

Linux Plumbers Conference 2022 - September 13, 2022

Figure: Series of events resulting in schebench messenger-worker consolidation

5 |

[AMD Official Use Only - General]

Challenges with Split-LLC
Inconsistency in Stream after NUMA Imbalance Rework

Challenges with Stream and Initial Placement

• With the NUMA Imbalance rework by Mel Gorman, we start
exploring LLCs in the non-local NUMA node when we
have equivalent of one task per LLC in the local NUMA

node.

• With the current logic, we can optimally place the Stream

threads out of the box and get same performance as case
with pinning.

• However, when there is an external task running in the

system, the current logic will default to local LLC when
there is a tie in number of idle CPUs between the local

LLC and the idlest LLC thus leading to a pileup and
performance degradation of 8-12% is observed between
good runs and bad runs.

• Before the NUMA Imbalance rework, the Stream results
were consistently poor as a result of the fact that we were

never exploring the LLCs from the non-local NUMA
node, and we always had at least one LLC with more than
one Stream thread.

Linux Plumbers Conference 2022 - September 13, 2022

Figure: Two Stream treads being placed on the same LLC as a result of

bias towards local LLC when there is a tie in number of idle CPUs in
the local LLC and the idlest LLC

6 |

[AMD Official Use Only - General]

How to detect if the Workloads are Bandwidth Intensive? (like Stream)
Lack of cached metrics to spot bandwidth-oriented task

• The bias toward local group when both the local group

and the idlest group have same number of idle CPUs is
unfavorable for workloads such as Stream.

• Going by the utilization to break the tie helped to an

extent but was not foolproof because:

• Kernel threads such as kcompactd bumped up the utilization,

there by biasing towards the local group yet again.

• Workloads such as hackbench which preferred consolidation

regressed.

• Stream has a large memory footprint right from the
moment the Stream threads are forked. Can metrics such

as the memory footprint be used as a proxy for the cache
busyness of the local group thereby facilitating better

spread?

of

groups

Prefer

Local Group

Choose

Based on group_util

Difference

(%)

1 1.00 1.02 -2%

2 1.00 0.99 +1%

4 1.00 1.00 0%

8 1.00 1.02 -2%

16 1.00 1.06 -6%

◢ Hackbench– runtime (less is better)

Linux Plumbers Conference 2022 - September 13, 2022

Figure: Potential tie breaking metrics

7 |

[AMD Official Use Only - General]

Challenges with Split-LLC
tbench: Thundering Herd Scenario

Thundering herd in tbench

• tbench tasks have a peculiar initial wakeup behavior
where the tasks, once placed on the CPU will wake
up and soon go to sleep.

• With the initial wakeup path depending on the
number of idle CPUs, this pattern is not favorable as

the task that goes to sleep soon after waking up will not
change the number of idle CPUs for long.

• With only few tasks running in the system, the

NUMA imbalance threshold is rarely crosses and
most tasks will be placed on the local NUMA node.

• When the tasks wakeup later, they storm the small
LLC and thus end up overloading it, later depending
on the load balancer to reach an optimal state later.

• We’ve observed that with a more balanced initial
placement, we can not only reduce the number of

migrations required later to reach an optimal stable
state, but also improve tbench throughput in several
different cases.

Linux Plumbers Conference 2022 - September 13, 2022

Figure: Illustration of tbench initial wakeup behavior leading to

thundering herd scenario

8 |

[AMD Official Use Only - General]

tbench Initial Placement Imbalance
Current Situation and Consequences

Initial LLC Distribution

+-----+------------------+-----------------+------------+

| LLC | Task Spawn Count | % of total task | Overloaded?|

+-----+------------------+-----------------+------------+

| 0 | 4 | 3.12 | |

| 1 | 1 | 0.78 | |

| 2 | 2 | 1.56 | |

| 3 | 1 | 0.78 | |

| 4 | 3 | 2.34 | |

| 5 | 3 | 2.34 | |

| 6 | 2 | 1.56 | |

| 7 | 7 | 5.46 | |

| 8 | 15 | 11.71 | |

| 9 | 12 | 9.37 | |

| 10 | 13 | 10.15 | |

| 11 | 11 | 8.59 | |

| 12 | 2 | 1.56 | |

| 14 | 32 | 25.00 | Overloaded |

| 15 | 20 | 15.62 | Overloaded |

+-----+------------------+-----------------+------------+

Initial NUMA Distribution

+-----------+------------------+-----------------+

| NUMA Node | Task Spawn Count | % of total task |
+-----------+------------------+-----------------+
| 0 | 23 | 17.96 |
| 1 | 105 | 82.03 |
+-----------+------------------+-----------------+

|
|
|
|
v

NUMA Distribution after 10000 Migrations
+-----------+------------------+-----------------+
| NUMA Node | Task Spawn Count | % of total task |
+-----------+------------------+-----------------+
| 0 | 67 | 52.34 |
| 1 | 61 | 47.65 |
+-----------+------------------+-----------------+

Note: We’ve observed the number of migrations come down

by 85% with a more optimal initial placement and an

improvement of 20% in the reported bandwidth for 64 client

case and an improvement of 12% in reported bandwidth for

128 client case on a dual socket system featuring 3rd

Generation EPYC processors

Linux Plumbers Conference 2022 - September 13, 2022

9 |

[AMD Official Use Only - General]

Why do we face these challenges only on Split-LLC Architectures?

• Often, a unified LLC architecture will

have a greater number of CPUs attached
to same L3 cache compared to the Split-
LLC offerings. With the current scheduler

heuristics in the wakeup path, there is a
higher probability that communicating

tasks get consolidated onto CPUs
belonging to same LLC.

• Crossing an LLC boundary in a unified
LLC architecture almost always results in

crossing the NUMA boundaries. With
optimizations such as Auto NUMA in place,
there is a greater chance for the task to be

placed on the most optimal NUMA node
and hence on the most optimal LLC.

• Thus, with the current scheduler heuristics,
the probability of getting the placement

decision incorrect is lower on unified
LLC architectures as opposed to on the

split LLC architectures.

Linux Plumbers Conference 2022 - September 13, 2022

Figure: Limitations of Split-LLC

architectures when comparing
with a unified LLC design.

Potential solution
What we have tried out

11 |

[AMD Official Use Only - General]

Userspace Hinting for Scheduler
Defining expected scheduler behavior for the workload

Peter Zijlstra’s case for hints based on workload characteristics
(https://lore.kernel.org/lkml/YVwnsrZWrnWHaoqN@hirez.programming.kicks-ass.net)

Linux Plumbers Conference 2022 - September 13, 2022

https://lore.kernel.org/lkml/YVwnsrZWrnWHaoqN@hirez.programming.kicks-ass.net

12 |

[AMD Official Use Only - General]

Userspace Hinting for Scheduler
Exploration : RFC Patches at https://lore.kernel.org/all/20220910105326.1797-1-kprateek.nayak@amd.com/

• Task placements and movement decisions are taken by the scheduler only at

the following points:

• During fork() / exec()

• During subsequent task wakeup.

• During load balancing.

• We can have a hint for each decision point to influence task placement in a
desired way.

• Hints explored for initial placement:

• FORK_AFFINE: Wakeup close to parent

• FORK_SPREAD: Spread regardless of NUMA imbalance threshold restriction. Use

utilization as a tie breaking metric when number of idle CPUs in groups are same.

• Hints explored for subsequent wakeup:

• WAKE_AFFINE: Wakeup close to waker

• WAKE_HOLD: Wakeup on same LLC where the task previously ran

• Hints are ignored if the preferred LLC or the currently running LLCs are

overloaded. Scheduler is aware if the task is on a preferred LLC and will try
to avoid moving the elsewhere during load balancing if LLC has capacity.

• For a user consumable API these hints needs to be further abstracted and

possibly be paired with other optimal tunable values that favor the
characterized workload.

Linux Plumbers Conference 2022 - September 13, 2022

Figure: Low level hints that define

task’s wakeup behavior

https://lore.kernel.org/all/20220910105326.1797-1-kprateek.nayak@amd.com/

13 |

[AMD Official Use Only - General]

Userspace Hinting : schbench

of

clients

Default

(Normalized)

Hint: FORK_AFFINE

(Normalized)

Improv.

(%)

1 1.00 0.86 +14%

2 1.00 0.91 +8%

4 1.00 0.90 +10%

8 1.00 0.77 +23%

16 1.00 0.86 +14%

32 1.00 0.92 +8%

64 1.00 0.97 +3%

128 1.00 0.96 +4%

256 1.00 1.03 -3%

◢ schbench (correct hints) – tail latency (Less is better)

of

clients

Default

(Normalized)

Hint: FORK_SPREAD

(Normalized)

Improv.

(%)

1 1.00 2.04 -104%

2 1.00 1.82 -82%

4 1.00 1.16 -16%

8 1.00 1.06 -6%

16 1.00 0.99 +1%

32 1.00 1.00 +0%

64 1.00 1.00 +0%

128 1.00 0.98 +2%

256 1.00 0.99 +1%

◢ schbench (incorrect hints) – tail latency (Less is better)

All benchmarks were run on a dual socket (2 x 64C/128T) system featuring 3rd Generation EPYC processors

running modified kernel based on the baseline tip:sched/core at sched-core-2022-08-01

Linux Plumbers Conference 2022 - September 13, 2022

14 |

[AMD Official Use Only - General]

Userspace Hinting : Hackbench and tbench

All benchmarks were run on a dual socket (2 x 64C/128T) system featuring 3rd Generation EPYC processors

running modified kernel based on the baseline tip:sched/core at sched-core-2022-08-01

of

clients

Default

(Normalized)

Hint: FORK_AFFINE + WAKE_AFFINE

(Normalized)

Difference

(%)

1 1.00 0.97 +3%

2 1.00 0.98 +3%

4 1.00 0.98 +2%

8 1.00 0.96 +4%

16 1.00 0.96 +4%

◢ Hackbench (correct hints) – runtime (less is better)

of

clients

Default

(Normalized)

Hint: FORK_SPREAD

(Normalized)

Difference

(%)

1 1.00 1.03 -3%

2 1.00 1.06 -6%

4 1.00 0.98 +2%

8 1.00 0.98 +2%

16 1.00 0.98 +2%

◢ Hackbench (incorrect hints) – runtime (less is better)

of

clients

Default

(Normalized)

Hint: FORK_AFFINE

(Normalized)

Difference (%)

1 1.00 1.00 0%

2 1.00 0.98 -2%

4 1.00 1.00 0%

8 1.00 0.93 -7%

16 1.00 0.95 -5%

32 1.00 0.93 -7%

64 1.00 0.78 -22%

128 1.00 0.64 -36%

256 1.00 0.45 -55%

◢ tbench (Wrong Hint) – Bandwidth (More is better)

of

clients

Default

(Normalized)

Hint: FORK_SPREAD

(Normalized)

Difference (%)

1 1.00 0.98 -2%

2 1.00 0.97 -3%

4 1.00 0.99 -1%

8 1.00 1.03 +3%

16 1.00 1.08 +8%

32 1.00 1.18 +18%

64 1.00 1.24 +24%

128 1.00 1.12 +12%

256 1.00 1.00 0%

◢ tbench (Correct Hint) – Bandwidth (More is better)

Linux Plumbers Conference 2022 - September 13, 2022

Discussion
What are your thoughts? What is the way ahead?

Acknowledgements

We would like to thank the Linux Kernel Scheduler community for its continued efforts at optimizing the Linux

Kernel Scheduler for Split-LLC Architectures and testing the changes on various hardware configuration out

there.

17 |

[AMD Official Use Only - General]17

COPYRIGHT AND DISCLAIMER

©2022 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC and combinations thereof are trademarks of Advanced Micro Devices, Inc. Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names used in this publication are for identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, sof tware changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Linux Plumbers Conference 2022 - September 13, 2022

Backup
Data and accounts to aid the discussion

20 |

[AMD Official Use Only - General]

Challenges from the Past
Modelling the MC Domain

Why does it matter?

• Without a properly modelled MC domain, tasks that are waking
up, would have been placed on an idle CPU without
considering if the CPU is from a cache-hot LLC.

Solution

• With a MC domain modelled to represent a group of CPUs
sharing the same L3, we can target the CPUs from a cache
hot LLC during the task wakeup.

• The CPU search space for subsequent task wakeup has been
narrowed down to relevant cache-hot CPUs.

Side Effects

• If a latency sensitive task, which doesn’t benefit from cache-

hotness, targets an LLC with no idle CPUs, it’ll be queued on
a busy run queue until the load balancer is triggered and the

task is migrated to an idle CPU. Without the restriction of an
MC Domain, the task could have found an idle CPU on the
system and wouldn’t have been dependent on the load

balancer to find an idle CPU to run on. Figure: MC Modelling in EPYC Processors

Linux Plumbers Conference 2022 - September 13, 2022

21 |

[AMD Official Use Only - General]

Challenges from the Past
Consequence of not having an MC Domain

of

clients

tip

(Normalized)

tip +

CONFIG_SCHED_MC = n

(Normalized)

Improvement

(%)

1 1.00 0.77 -23%

2 1.00 0.82 -17%

4 1.00 0.91 -9%

8 1.00 0.90 -10%

16 1.00 0.93 -7%

32 1.00 0.94 -6%

64 1.00 1.02 +2%

128 1.00 1.25 +25%

256 1.00 1.11 +11%

◢ tbench – Bandwidth (More is better)
of

clients

tip

(Normalized)

tip +

CONFIG_SCHED_MC = n

(Normalized)

Improvement

(%)

1 1.00 1.78 -78%

2 1.00 1.57 -57%

4 1.00 1.45 -45%

8 1.00 1.46 -46%

16 1.00 1.70 -70%

◢ hackbench– runtime (less is better)

of

clients

tip

(Normalized)

tip +

CONFIG_SCHED_MC = n

(Normalized)

Improvement

(%)

1 1.00 0.57 -43%

2 1.00 0.55 -45%

4 1.00 0.50 -50%

8 1.00 0.51 -49%

◢ Stream – Bandwidth (more is better)

Linux Plumbers Conference 2022 - September 13, 2022

All benchmarks were run on a dual socket (2 x 64C/128T) system featuring 3rd Generation EPYC processors

running modified kernel based on the baseline tip:sched/core at sched-core-2022-08-01

22 |

[AMD Official Use Only - General]

Side Effects
Consequence of limiting search space

of

clients

tip

(Normalized)

tip +

CONFIG_SCHED_MC = n
(Normalized)

Difference

(%)

1 1.00 0.77 -23%

2 1.00 0.82 -17%

4 1.00 0.91 -9%

8 1.00 0.90 -10%

16 1.00 0.93 -7%

32 1.00 0.94 -6%

64 1.00 1.02 +2%

128 1.00 1.25 +25%

256 1.00 1.11 +11%

◢ tbench – Bandwidth (More is better)

of

workers

tip

(Normalized)

tip +

CONFIG_SCHED_MC = n
(Normalized)

Difference

(%)

1 1.00 0.71 +29%

2 1.00 0.64 +36%

4 1.00 0.80 +20%

8 1.00 0.89 +11%

16 1.00 0.84 +16%

32 1.00 0.99 +1%

64 1.00 1.03 -3%

128 1.00 0.99 +1%

256 1.00 0.99 +1%

◢ schbench – tail latency (Less is better)

Linux Plumbers Conference 2022 - September 13, 2022

All benchmarks were run on a dual socket (2 x 64C/128T) system featuring 3rd Generation EPYC processors

running modified kernel based on the baseline tip:sched/core at sched-core-2022-08-01

23 |

[AMD Official Use Only - General]

Why schbench improves after disabling CONFIG_SCHED_MC?

• Following sched tracepoints can be enabled to observe the reason for the improvements:

• sched_wakeup_new: To verify the LLCs where the tasks are initially places

• sched_waking: To verify if a migration is a wakeup migration or a load balancer migration

• sched_wakeup: To verify if a migration is a wakeup migration or a load balancer migration

• sched_migrate_task: To track task movement through out the system

• Without the MC Domains to detect the split-LLC design, the NUMA imbalance value is now 16 for the dual socket system.

• More often than not, most schbench threads are placed on the same LLC

Linux Plumbers Conference 2022 - September 13, 2022

24 |

[AMD Official Use Only - General]

Challenges from the Past
NUMA Imbalance

Why does it matter?

• With a generous threshold of 25% of total CPUs in the
sched domain with SD_NUMA flag set, a dual socket
offering wouldn’t have placed any task initially on an

external NUMA node until the threshold is crossed.

• Bandwidth oriented workloads, such as Stream, took a

huge toll on performance due to the inevitable piling
up of tasks on same LLC leading to cache contention.

Solution

• With Mel’s NUMA imbalance rework, the threshold for

split-LLC architectures is set to number of LLCs in
NUMA nodes, the Stream threads are placed ideally
right from the start.

Side Effects

• Communicating tasks are now spread across NUMA
boundaries early on thus relying on subsequent
wakeups for task consolidation.

• With lower imbalance threshold, the initial placement of
Stream threads is more sensitive to external tasks

running in system and can cause run-to-run variance.

We would like to thank Mel Gorman, and everyone involved in development,

discussion, and testing of the NUMA Imbalance rework.

Linux Plumbers Conference 2022 - September 13, 2022

25 |

[AMD Official Use Only - General]

Challenges from the Past
NUMA Imbalance Rework

Following are the results comparing the results of Stream on dual socket 2 x 64C/128T system featuring

3rd Generation AMD EPYC processors before and after Mel’s rework:

Stream

Kernel

Before

Rework
(Normalized)

After

Rework
(Normalized)

Difference

(%)

Copy 1.00 1.33 +33%

Scale 1.00 1.70 +70%

Add 1.00 1.70 +70%

Triad 1.00 1.70 +70%

Stream (10 runs) (NPS1) – Bandwidth (more is better)

Stream

Kernel

Before

Rework
(Normalized)

After

Rework
(Normalized)

Difference

(%)

Copy 1.00 1.70 +70%

Scale 1.00 1.69 +69%

Add 1.00 1.79 +79%

Triad 1.00 1.74 +74%

Stream (100 runs) (NPS1) – Bandwidth (more is better)

Stream

Kernel

Before

Rework
(Normalized)

After

Rework
(Normalized)

Difference

(%)

Copy 1.00 2.67 +167%

Scale 1.00 3.46 +246%

Add 1.00 3.35 +235%

Triad 1.00 3.37 +237%

Stream (10 runs) (NPS2) – Bandwidth (more is better)

Stream

Kernel

Before

Rework
(Normalized)

After

Rework
(Normalized)

Difference

(%)

Copy 1.00 2.71 171%

Scale 1.00 2.47 147%

Add 1.00 2.67 167%

Triad 1.00 2.59 159%

Stream (100 runs) (NPS2) – Bandwidth (more is better)

Linux Plumbers Conference 2022 - September 13, 2022

26 |

[AMD Official Use Only - General]

Challenges from the Past
Search latency in a busy LLC (Thank you Chen Yu!)

Why does it matter?

• In the absence of an idle core in an LLC, the Stop Idle
Search algorithm previously used the average LLC scan
cost and amount of time a CPU was idle to limit the search

space for an idle CPU with a lower limit set to 4.

• The metric was not only inaccurate but also led to wasted

search effort when LLC is fully loaded.

Solution

• With the SIS_UTIL algorithm, we can better estimate how idle
an LLC is based on its utilization and limit the search more

accurately.

• The initially proposed linear function was not optimal for
split-LLCs.

• Based on the feedback in the community, a quadratic
function was adopted, which allowed for a larger search of

the LLC space when LLC was less utilized and cut off the
idle CPU search when LLC was overloaded.

• With SIS_UTIL algorithm, the run-to-run variance observed

in tbench when system is fully loaded disappeared and a
stable 79% improvement was observed for the same.

We would like to thank Chen Yu, and everyone involved in development,

discussion, and testing of the SIS_UTIL algorithm.

Linux Plumbers Conference 2022 - September 13, 2022

27 |

[AMD Official Use Only - General]

schbench: Tracing events leading to variation in tail latencies
Verifying the timeline

The described scenario can be confirmed by enabling the following sched tracepoints:

• sched_wakeup_new: To verify the LLCs where the tasks are initially places

• sched_waking: To verify if a migration is a wakeup migration or a load balancer migration

• sched_wakeup: To verify if a migration is a wakeup migration or a load balancer migration

• sched_migrate_task: To track task movement through out the system

Linux Plumbers Conference 2022 - September 13, 2022

28 |

[AMD Official Use Only - General]

MM Statistics to Influence Initial Task Placement
Predicting Task Behavior from Memory Footprint

Initial Task Placement Strategy

• Use total number of pages allocated by a
task as a proxy for the LLC utilization by
the task.

• Mark an LLC as overloaded if it has no
more idle CPUs or if the sum of memory

footprint of the tasks running is the LLC is
4 times the size of the LLC.

• Use the best-fit algorithm to bias the task

placement of incoming task towards an LLC
with the smallest memory-hole that can

fulfil the memory requirement of the
incoming task without overloading.

• In case all LLCs are overloaded or cannot

accommodate the memory footprint of the
incoming task, use the current logic based

on number of idle CPUs. In case of a tie
between the number of idle CPUs, the total
memory footprint of tasks running in the

LLC is used as a tie-breaking metric.

Linux Plumbers Conference 2022 - September 13, 2022

Figure: Illustration of task placement strategy based on

memory footprint of task running in an LLC

29 |

[AMD Official Use Only - General]

MM Statistics for Initial Task Placement

of

groups

Default Logic

(Normalized)

MM Statistics Rework

(Normalized)

Difference (%)

1 1.00 0.93 +6%

2 1.00 0.97 +3%

4 1.00 0.97 +3%

8 1.00 0.94 +6%

16 1.00 0.99 +1%

hackbench– runtime (less is better)

Stream

Kernel

Default

Logic

(Normalized)

MM Statistics

Rework

(Normalized)

Difference (%)

Copy 1.00 0.38 -63%

Scale 1.00 0.40 -60%

Add 1.00 0.40 -60%

Triad 1.00 0.39 -61%

Stream – Run to Run Variance (less is better)

of

clients

Default

Logic
(Normalized)

MM Statistics

Rework
(Normalized)

Difference

(%)

1 1.00 1.01 +1%

2 1.00 1.01 +1%

4 1.00 0.96 -4%

8 1.00 1.02 +2%

16 1.00 1.04 +4%

32 1.00 1.01 +1%

64 1.00 1.02 +2%

128 1.00 1.04 +4%

256 1.00 0.76 -24% *

tbench – Bandwidth (More is better)

of

workers

Default

Logic

(Normalized)

MM Statistics

Rework

(Normalized)

Difference

(%)

1 1.00 0.69 +31%

2 1.00 0.57 +43%

4 1.00 0.66 +33%

8 1.00 0.70 +30%

16 1.00 0.78 +22%

32 1.00 0.88 +12%

64 1.00 0.94 +6%

128 1.00 0.99 +1%

256 1.00 0.97 +3%

schbench – tail latency (Less is better)

* Note: tbench regresses

at higher worker count as
all tasks wake up on

parent’s LLC since we

only account the memory
footprint of running tasks

and the tbench tasks
sleep soon after the initial
wakeup thus leading to

overloading.

Linux Plumbers Conference 2022 - September 13, 2022
All benchmarks were run on a dual socket (2 x 64C/128T) system featuring

3rd Generation EPYC processors running modified kernel based on the baseline tip:sched/core of 5.17.0-rc5

30 |

[AMD Official Use Only - General]

Userspace Hinting : schbench with Two Level Wakeup

of

clients

Default

(Normalized)

Hint:FORK_AFFINE +

WAKE_HOLD +
WAKE_WIDE
(Normalized)

Difference

(%)

1 1.00 0.81 +19%

2 1.00 0.96 +4%

4 1.00 1.00 +0%

8 1.00 0.91 +9%

16 1.00 0.95 +5%

32 1.00 1.00 +0%

64 1.00 0.93 +7%

128 1.00 0.97 +3%

256 1.00 0.96 +4%

◢ schbench (correct hints) – tail latency (Less is better)

Linux Plumbers Conference 2022 - September 13, 2022

All benchmarks were run on a dual socket (2 x 64C/128T) system featuring 3rd Generation EPYC processors

running modified kernel based on the baseline tip:sched/core at sched-core-2022-08-01

