
Scalability solutions for the mmap_lock

● Maple Trees
● Per-VMA locks
● SPF



2

Quick recap: the problem

mm_struct contains mmap_lock rw_semaphore which

● Protects the VMA list / rbtree
● Prevents VMA from being freed while in use by other threads
● Protects many other fields in mm_struct

Issue: mmap_lock is a coarse-grained lock that creates contention. Examples:

● Android: multi-threaded application launch
● Google Fibers: threads creating a set of VMAs
● smaps/maps polling

https://lwn.net/Articles/591978/, https://lwn.net/Articles/787629/



3

Maple Tree Review

Cache Efficiencies

● Reduces the mm_struct (1000 -> 992)*
● Reduces vm_area_struct size (192 -> 144)*

○ *: depends on config options, same config was used in comparison

Data Structure Reduction

● Removes VMA doubly linked list
● Removes VMA augmented rbtree
● Removes vmacache

Supports RCU



4

Per-VMA locks: The idea

Each VMA gets a rw_semaphore lock.

VMA modifier takes per-VMA write lock for:

● VMA unmapping, remapping, copying, merging, splitting, resizing
● VMA flags or protection changes

Page fault handler finds VMA containing the faulting address under RCU protection 
and tries to take per-VMA read lock. On failure it falls back to mmap_lock.

VMAs are freed after RCU grace period.



5

Per-VMA locks: Encountered issues and Results

Multiple VMAs might need to be locked (vma_merge/vma_split) - adds complexity.

- Addressed by marking VMAs as locked and unlocking in bulk

Some paths in fork and exit_mm should take all per-VMA locks instead of one 
mmap_lock.

- Regressions in exit path are fixed by freeing vm_area_structs in bulk

Results: Improves performance of PFT benchmarks and Android launch times (~75% 
of the improvement that we saw with SPF).

RFC link: https://lore.kernel.org/all/20220829212531.3184856-1-surenb@google.com



6

Per-VMA locks: The anatomy

To avoid tracking locked VMAs and to be able to unlock them in bulk two sequence counters are 
introduced:

vm_area_struct.vm_lock_seq

mm_struct.mm_lock_seq

Main functions:

VMA is write locked => (vm_area_struct.vm_lock_seq == mm_struct.mm_lock_seq)

VMA is write unlocked => (vm_area_struct.vm_lock_seq != mm_struct.mm_lock_seq)

Lock VMA => (vm_area_struct.vm_lock_seq = mm_struct.mm_lock_seq)

Unlock all VMAs => (mm_struct.mm_lock_seq++)


