

… and Mysterious Counters

Copy On Write, Get User Pages

David Hildenbrand

david@redhat.com

12. September 2022

2

Agenda

3

Background
1. Copy On Write

2. Mysterious Counters
3. Get User Pages
4. What could go wrong?
5. More Mysterious Counters

Anonymous Memory: PageAnonExclusive
1. Overview

2. Other Applications
3. What’s missing?

Discussion
1. Future of the Mapcount ?

2. Future of hugetlb COW-sharing during fork() ?
3. Future of Page Reuse during COW ?
4. Future of R/O Pinning ?

Background

4

1. Copy-on-Write (COW) (1)

5

… we’ll focus on COW in private mappings (MAP_PRIVATE)

Avoid creating a private copy of a page as long as there are no modifications
● Share page with COW semantics: map it R/O

○ Zeropage, pagecache page, anonymous page, KSM page …
● Break COW on write fault

○ Create private writable copy

Page
Table 0

Page
Table 1

Write fault via Page Table 0

COW

Anon
Page

R/O

R/O R/O

R/W

Zero-
page

Page
Table 0

Page
Table 1

Zero-
page

1. Copy-on-Write (COW) (2)

6

Shared anonymous pages? Important optimization for fork() …
● Share anonymous page R/O between parent and child

○ Lazily copy on demand
● On write fault … always create a private copy?

○ Wasteful: what if the child immediately quit?

Detecting possible sharing is a bit tricky …
● Traditional: “how many user page tables reference this page (in)directly?”

Page
Table 0

Page
Table 1

Write fault via Page Table 0

COW

Anon
Page 1

R/O

R/O R/O

R/W

Anon
Page 0

Page
Table 0

Page
Table 1

Anon
Page 0

2. Mysterious Counters

7

Refcount: one counter per folio (page_count)
● “how many tracked references to this folio”

Swapcount: one counter per subpage of a folio
● … if the folio is in the swapcache
● “how many swap PTEs indirectly reference this subpage”

“Entire mapcount”: one counter per folio
● “how often is this entire folio mapped into a user page table”
● … and a mapcount per subpage of a folio and things get messy

● page_mapcount(): entire mapcount + subpage mapcount

How to detect if an anonymous page is exclusive vs. shared?
● page_mapcount() + swap_count() == 1 ?
● page_count() == 1 ?

3. Get User Pages (GUP)

8

Lookup a page in a user page table and reference it for immediate/later use
● Short term: O_DIRECT, ptrace, …
● Long term: VFIO, RDMA, io_uring fixed buffers, …

… with various flavors:
● FOLL_GET: “access struct page”
● FOLL_PIN: “access page content”
● FOLL_WRITE: R/W vs. R/O

… and various special cases:
● FOLL_FORCE: ignore VMA permissions (debug access)
● GUP-fast: don’t take any locks …

Base
Page

Huge
Page

Gigantic
Page

PTE Table

PMD
Table

PUD
Table

P4D
Table

PGD
Table

Base
Page

Base
Page

THP

(1) Walk

(2) Reference + return

4. What could go wrong (1)

9

Parent

mem = mmap(MAP_PRIVATE)

strcpy(mem, “Boring Data”)

fork()

strcpy(mem, “Secret Data”)

Child

assert(!strcmp(mem, “Boring Data”));
fds = pipe()
vmsplice(fds[1], mem)
munmap(mem)

data = read(fds[0])
assert(!strcmp(data, “Boring Data”));

mapcount: 1

mapcount: 2

mapcount: 1

mapcount: 1

mapcount: 2

mapcount: 2

-> No COW

mapcount: 1

-> Fail

page_mapcount() + swap_count() == 1 ?

CVE-2020-29374 (Jann Horn)

4. What could go wrong (2)

10

mem = mmap(pagesize, MAP_PRIVATE)

memset(mem, 0, pagesize);

iov.iov_base = mem;
iov.iov_len = size;
io_uring_register_buffers(&ring, &iov, 1);

/* page gets mapped R/O in the page table for reason X */

memset(mem, 0xff, pagesize);

io_uring_prep_write_fixed(..., fd, mem, pagesize);
io_uring_submit(...)
io_uring_wait(...)

P0, refcount: 1

P0, refcount: 2

COW
P1, refcount: 1

Note: The actual refcounts are slightly different

page_count() == 1 ?

P0, refcount: 1 stale data written

5. More Mysterious Counters

11

Pincount: one counter for large folios
● “how often was this folio pinned via GUP”
● Can be speculatively raised by GUP-fast

… there is no pincount for order-0 folios?
● Bits in “struct page” are rare
● Mangled into the refcount

○ GUP_PIN_COUNTING_BIAS = 1024

folio_maybe_dma_pinned() cannot have false negatives
● … but false positives in both cases

… COW decisions based on mysterious counters?

Anonymous Memory: Exclusive vs. Maybe Shared

Anonymous Memory:
PageAnonExclusive

12

1. Overview

13

PageAnonExclusive: definitely exclusive vs. might be shared
● Fresh or writable anonymous pages are exclusive (PageAnonExclusive set)
● Never pin an anonymous page that might be shared (PageAnonExclusive not set)
● Never share (clear PageAnonExclusive) an anonymous page that might be pinned

R/O Pinning a R/O-mapped anonymous page that is not exclusive?
● Trigger unsharing first – similar to a write fault (Andrea Arcangelli)

Reuse page if not exclusive: if there is only one reference (page_count() == 1)
● Can result in unnecessary copies on other (e.g., speculative) references

Anon
Page 0

Page
Table 0

Page
Table 1

GUP-triggered unsharing
via Page Table 0

Anon
Page 1

Page
Table 0

Page
Table 1

Anon
Page 0

R/O

R/O R/O

R/O

PageAnonExclusive set

PageAnonExclusive not set

2. Other Applications

14

mprotect(PROT_READ) -> mprotect(PROT_READ|PROT_WRITE)
● Exclusive anonymous page: Map the page writable

○ Avoid a write fault

FOLL_FORCE|FOLL_WRITE on MAP_PRIVATE VMA without PROT_WRITE
● Used for ptrace like /proc/self/mem access
● Exclusive anonymous page: Allow pinning/referencing the page
● Fix for a security issue – Dirty-COW for SHMEM (CVE-2022-2590)

NUMA hinting (WIP)
● Same as mprotect(): replace pte_mk_savedwrite() …

3. What’s missing?

15

hugetlb
● Still uses the mapcount to make COW decisions

○ hugetlb cannot deal with unnecessary copies

O_DIRECT conversion FOLL_GET -> FOLL_PIN
● Makes O_DIRECT/vmsplice/… with fork() fully functional
● John Hubbard is on it

Preserve exclusive flag on more architectures in swp PTE
● For now only x86-64, s390x, aarch64, ppc64/book3s
● Others can lose the exclusive flag

GUP-fast handling
● GUP-fast is tricky; one pending fix for PageAnonExclusive

selftests
● WIP :)

Anonymous Memory: Exclusive vs. Maybe Shared

Discussion

16

1. Future of the Mapcount ?

17

We no longer need the mapcount to make COW decisions
● well, hugetlb is an exception …

… but it obviously has other users
● Detecting page table mappings: e.g., page_mapped()
● Detecting unknown references: e.g., mapcount != pagecount + 1
● Best-guess detection of “single page table mapping”: e.g., MADV_PAGEOUT

… which raises the questions
● … do we still need full accuracy (~31 bit)?
● … do we still need a mapcount per THP subpage?

○ … PG_doublemap, total_mapcount() …

2. Future of hugetlb COW-sharing during fork()?

18

COW-sharing of hugetlb pages is awkward
● Hugetlb reservation … hugetlb pages cannot really be overcommitted
● Running out of hugetlb pages during COW?

○ Let’s just steal the page from the child process …

… can we rework it and avoid COW-sharing during fork() altogether?
● Treat it as MADV_DONTFORK? :/
● Don’t share but instead copy all pages for the child during fork (fail early)? :/

Maybe we should never have added COW-sharing of hugetlb pages … can we deprecate?

3. Future of Page Reuse during COW ?

19

Anonymous Pages
● We never reuse “maybe shared” anonymous pages if there is more than one reference

○ On a PTE-mapped THP, we never reuse
● But how could we really optimize without the mapcount+swapcount?

KSM Pages
● We never reuse KSM pages

○ Have to remove the page from the KSM (stable) tree
○ Have to convert KSM page -> anonymous exclusive page

● 52d1e606ee73 (“mm: reuse only-pte-mapped KSM page in do_wp_page()”) implement that

Pagecache Pages
● We never reuse pagecache pages

○ Have to remove the page from the pagecache (only possible if clean? what else?)
○ Have to convert pagecache page -> anonymous exclusive page

… do we even care about optimizing these cases?

4. Future of R/O Pinning ?

20

We don’t want to R/O pin COW-shared pages with LONGTERM semantics
● The next write fault would break COW and turn the R/O PIN stale/unreliable
● Current workaround: FOLL_FORCE | FOLL_WRITE

MAP_PRIVATE
● We have to break COW if we don’t find an exclusive anonymous page

○ pagecache page, shared zeropage …
● “easy”

MAP_SHARED
● We usually don’t care about FS-handled COW (lazy allocation of disk blocks)

○ … we just don’t want the mapped page to change
● DAX FS uses the shared zeropage to lazily allocate DAX pages .. any other cases?

○ … do we really care for now?
● Implementing unsharing support in FS would be more involved

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

21

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

