Open source FPGA NVMe
accelerator platform for BPF
driven ML processing with
Linux/Zephyr

ANTMICRO

« Founded in 2009, Antmicro provides commercial
open source engineering services, platforms
and tools (SW, HW, FPGA, ASIC)

« Introducing new design methodologies and
workflows based on open source

« Applying those methodologies and using Zephyr
to build real products and development
platforms - like the one we will describe today, an
open source NVMe accelerator platform

WHAT IT IS ALL ABOUT

.« The goal of the project is to provide a platform W t D' .t I
for research on computational storage es ern Igl a ®
« Build an open source platform for NVMe

accelerators development on a flexible FPGA
SoC platform - Xilinx US+ MPSoC

« Create an open source NVMe FPGA core

, ;%) antmicro

essential NVMe operations

« Expand initial NVMe implementation with
custom accelerator-related extensions

WHY DO WE NEED ACCELERATORS IN
NVMe DRIVES?

« Machine Learning usually operates on large
amounts of data

» Transferring data back and forth generates
bottlenecks and costs

« NVMe accelerators reside close to stored data

« They allow us to process the data on the fly, or
perform computation on already stored data,
detect interesting patterns

» Data can be processed directly without
consuming compute resources / spinning
up machines

TARGET HW PLATFORM

FPGA Based PCle ML/AI Accelerator Device in
U.2 Formfactor

Xilinx Ultrascale+ MPSoC XCZU7EV
4GB DDR

Gen3 x4 PCle 2.5” SFF

25W Max Power

Western Digital wwwwdcicom

@::"zu

DEVELOPMENT PLATFORM -ZCU106

SYSTEM OVERVIEW

PL . PS

AXI-Stream AXl14

PCle core PCle DMA PS DDR Memory APU (A53)
[[y Y : [[¥
] AXI-Lite :
1 1
1 1
AXI-Stream i 3 . !
: Interrupt AXl14 AXI-Lite Interrupt .
S N \ '
1 1
: 1 !
AXI-Lite AXI-Lite ¥ v AXI-Lite L

PCle AXI-Lite Bridge Interrupt NVMe control registers |nte:rrupt RPU (R5) Interrupt PS IPI core

NVMe COMMANDS

« Admin commands:

= |dentify

= GetLog

= Queue management n
+ 1O commands: ‘

= Read

o Write
o Flush

EXPRESS

SYSTEM OVERVIEW

PL . PS

AXI-Stream AXl14

PCle core PCle DMA PS DDR Memory APU (A53)
[[y Y : [[¥
] AXI-Lite :
1 1
1 1
AXI-Stream i 3 . !
: Interrupt AXl14 AXI-Lite Interrupt .
S N \ '
1 1
: 1 !
AXI-Lite AXI-Lite ¥ v AXI-Lite L

PCle AXI-Lite Bridge Interrupt NVMe control registers |nte:rrupt RPU (R5) Interrupt PS IPI core

BASE NVMe COMMAND SET HANDLING

« FPGA NVMe subsystem is handled by software running
on the Cortex R5 CPU complex

« The R5 software is a Zephyr app and it handles base

NVMe commands ‘

= NVMe registers accesses from host generates »A
interrupts handled by the software running on the R5 Ze h rm
cores p y

= The software handles commands queues, data
transfers, control messages etc.

« All the “unknown” commands are passed to a Linux
service for processing

HOW TO HANDLE DYNAMIC FPGA
LOGIC

« The dynamic nature of the FPGA logic makes it
harder to maintain both parts (FPGA logic and
software) and keep them in line

- Each change may impact both both sides of the
system:

= Adding e.g. new NVMe commands may
reorganize the memory layout of the device

= Commands queues length may change

() antmicro

GENERATE THE CODE ON THE FLY

- A solution to that is to generate both sides of the
code on-the-fly

« The build system we introduced parses the
NVMe 1.4 specification (a pdf file) and generates
the following:

= NVMe registers logic (Chisel code)
o Zephyr app register definitions (header files)
s Zephyr app register access logic (C code)

« The generator itself is available on GitHub

() antmicro

https://github.com/antmicro/nvme-registers-generator

EXTRACTED REGISTER MAP IN CHISEL

NVMeCore
chisel3._

object CSRRegMap {
val regMap = Map [Int, BaseRegister] (
Ox0 —> Module(ReadOnlyRegister (CAP_0, 32)),
Ox4 —> Module (ReadOnlyRegister (CAP_1, 32)),
Ox8 —> Module(ReadOnlyRegister (VS, 32)),

Oxel® -> Module(StorageRegister (PMRSWTP, 32)),

Oxel4 -> Module(StorageRegister (PMRMSC_0, 32)),
Oxel8 -> Module(StorageRegister (PMRMSC_1, 32)),

EXTRACTED REGISTER DEFINITION IN CHISEL

NVMeCore
chisel3._
CAP_0O RegisterDef {
val TO = UInt(8.W)
val Reserved_2 = UInt(5.W)
val AMS = UInt(2.W)
val CQR = Bool()
val MQES = UInt(16.W)

NON-STANDARD NVMe COMMANDS

« As mentioned earlier, all the commands not known to
Zephyr app are passed upwards for further processing
to Linux running on the second, Cortex-A53 CPU A A
complex

» This makes the platform easily extendable and perfect
for experimenting with NVMe specification extensions

OPENAMP

- Framework for systems with
asymmetric multiprocessing

» Provides easy method of communication
between CPUs in AMP system

« RPU side runs Zephyr and is controlled from
Linux application (using openAMP)

« Linux application implements openAMP
communication and interfaces NVMe blocks
with eBPF virtual machine

antmlcro

Heterogeneous or Asymmetric: AMP

Homogeneous

SMP OS
E.g. Linux

Cortex-A

Master Memory Shared memory

Baremetal
RTOS

Cortex-R
Split or
lockstep

Remote Memory

ACCESSING THE ACCELERATOR

« APU runs a service fetching the all the
unhandled NVMe commands and checks if they
are accelerator-specific - it communicates via
rpmsg

« The custom command are used to control

various aspects of the system: T F .
= |oading the firmware for the accelerator, as ensor IOW the
well as ML model and inputs
= Controlling the accelerator flow (resetting,

starting/stopping)

ACCELERATOR FIRMWARE

« https://qgithub.com/iovisor/ubpf

« Accelerator firmware is in fact an eBPF bytecode

« It is executed inside BPF virtual machine running
in Linux user space

- The firmware can be generated from C source
using LLVM

TensorFlow Lite

A eBPF

https://github.com/iovisor/ubpf

MACHINE LEARNING RUNTIME ON APU

« The uBPF virtual machine was extended with
functions for running the machine learning

models with given inputs Te nsorFIOW I_lte

e The runtime used for the ML models is

TensorFlow Lite

» TensorFlow Lite has a native implementation for
most of the available ML operations and can run
models directly on APU

» TensorFlow Lite also provides a delegation
mechanism, allowing the developers to move
computations of certain operations to the
dedicated accelerator hardware

SPECIFICATION OF NEW OPERATIONS IN BPF (VM CODE)

void vm tflite apu (char *ibuf, char *obuf, int isize, int osize, int model size)
{
*model buf = ibuf;
*input buf = ibuf+model size;
tflite handler (model buf, input buf, obuf, model size, isize, osize, false);
}
void vm tflite vta (char *ibuf, char *obuf, int isize, int osize, int model size)

*model buf = ibuf;

*input buf = ibuf+model size;
tflite handler (model buf, input buf, obuf, model size, isize, osize, true) ;
}
void register functions (struct ubpf vm *vm)
{
ubpf register(vm, 1, "print", (*)vm_print);
ubpf register(vm, 2, "tflite apu", (*)vm_tflite apu);

ubpf register(vm, 3, "tflite vta", (*)vm_tflite vta);

EXAMPLE ACCELERATOR FIRMWARE

static

static vo

int bpf pr

{

(*print) (char*) = (*)1;
(*tfliteivta)(char*, char*, int, int, int) = (*)3;
rog (char *imem, char *omem)
model size = 1024;
input size = §;
output size = 4;
expected output[] = {0x7, 0xC, 0x4, 0x5};
tflite vta(imem, omem, input size, output size, model size);
(i = 0; i < output size; i++) {
(omem[i] != expected output[i]) {

print ("ADD test failed\n");
i;

print ("ADD test passed\n");

,l;

SUPPORT FOR EXTERN FUNCTIONS IN FIRMWARE (COMING SOON)

extern void (*print) (char*);
extern void (*tflite vta) (char*, char*, int, int, int);

int bpf prog(char *imem, char *omem)

{
model size = 1024;
input_size = 8;
output size = 4;
expected output[] = {0x7, 0xC, 0x4, 0x5};

tflite vta(imem, omem, input size, output size, model size);

(i = 0; i < output size; i++) {
(omem[i] != expected output[i]) {
print ("ADD test failed\n");
i;
}

}

print ("ADD test passed\n");
,l;

ACCELERATOR DESIGN - VTA

github.com/apache/tvm-vta

smlvMm

« VTA (Versatile Tensor Accelerator)

= Programmable and customizable accelerator IP core

o Written in Chisel

INSTRUCTION FETCH MODULE
= Part of the Apache TVM framework
. B o
« Consists of three main modules - LOAD module, COMPUTE LooMP G MPSTQ
module and STORE module Iy B e RN
REGISTER
- Each module has its specific instruction queue LOAD I: = STORE
MODULE MODULE
« Order of execution is determined by dependency queues
Eiiiininng Mg
- TensorFlow Lite executed within eBPF virtual machine can) .
— Coumorsue]
delegate certain operations to the VTA, utilizing its high

para llelism https://tvm.apache.org/docs/topic/vta/dev/hardware.html

https://github.com/apache/tvm-vta
https://tvm.apache.org/docs/topic/vta/dev/hardware.html

VTA DELEGATE IN TENSORFLOW LITE

« TensorFlow Lite delegate prepares the instruction stream that is
passed asynchronously to the VTA
« Instruction stream consists of:
= VTA LOAD instructions (VTALoadBuffer2D)
= VTA STORE instructions (VTAStoreBuffer2D)
= VTA micro-op kernel (VTAUop), consisting of:
= Quter and inner loop for GEMM/ALU operations
= GEMM/ALU operations (one or many), deployed on
various VTA SRAM addresses
= Dependency pushes and pops for 4 synchronization queues
(LOAD->COMPUTE, COMPUTE->LOAD, COMPUTE->STORE,
STORE->COMPUTE)
+ Dependency queues allow modules to work independently,
allowing to hide I/O latency
« Once VTA finishes the instructions, APU collects results

LOAD1

LOAD2

COMP1

COMP2

LOAD3

LOAD4

COMP3

COMP4

STORE

STORE

COMP1

COMP2

COMP3

COMP4

STORE |

STORE

THE CHIPS
L. JLINUX ALLIANCE

FOUNDATION

HOW TO GET ON WITH THE PROJECT

o All the code is available on GitHub
https://qithub.com/antmicro/alkali-csd-projects
It will be donated to CHIPS Alliance soon

Western Digital.

antmlcro

https://github.com/antmicro/alkali-csd-projects

THE CHIPS
L. JLINUX ALLIANCE

FOUNDATION

PROJECT STRUCTURE

« Automated build system for building the project

o https://github.com/antmicro/alkali-csd-projects

= Contains examples for the supported boards

= Uses Alkali firmware and hardware submodules
« Alkali hardware (FPGA) repository

o https://github.com/antmicro/alkali-csd-hw

= Generates hardware description file and bitstream a ntm |C|‘O
- Alkali firmware repository

o https://github.com/antmicro/alkali-csd-fw

= Generates APU and RPU applications, U-Boot,

Linux and rootfs

Western Digital.

https://github.com/antmicro/alkali-csd-projects
https://github.com/antmicro/alkali-csd-hw
https://github.com/antmicro/alkali-csd-fw

SUMMINGITUP

« Open source NVMe development platform is a perfect
framework for research and development of
computational storage concepts) | A

» Beside the complete platform, there is a number of
useful blocks developed within the project that can be
reused to build an NVMe device

« Contributions are welcome!

, ;%) antmicro

THANKYOU
FOR YOUR ATTENTION!

