
1



Bringing up FUSE mounts C/R support

2



How CRIU handles filesystems?

● we have a special structure called fstype:
○ name / code
○ dump
○ restore
○ parse
○ can_mount
○ sb_equal

3



Example: tmpfs

● tmpfs_dump
○ save the entire filesystem to the image file (tar.gz archive)

● tmpfs_restore
○ extracts the entire tree after new mount is ready

4



Block-device based: ext4, xfs, …

● we don’t handle them as:
○ in most scenarios this filesystems is an external mounts
○ can only be mounted by the root user (only one such mount in 

container and bindmounts)

5



Example: overlayfs

● mount
○ parses option string, resolves paths and build a new mount option 

string
● can_mount

○ checks that all mount dependencies are met
■ lowerdirs
■ upperdir
■ workdir

6



NFS (OpenVZ fork)

● We can’t mount NFS (no network)
● Mount Stub-Proxy File System (SPFS) with two modes:
○ stub - hangs on any IO
○ proxy - translates all fs actions to some directory

● Set “proxy” mode
● Perform files open (restore stage)
● Set “stub” mode
● After CRIU restore finishes…
● freeze again and do spfs lazy umount, mount nfs on that place
● iterate over processes and replace file descriptors on the fly

7



When are mounts restored?

1. mounts (prepare_mnt_ns())
2. tasks

a. mappings (prepare_mappings() -> premap_priv_vmas())

8



FUSE challenges

1. FUSE daemon is required to mount
2. FUSE daemon is the process

■ it may have shared memory
■ it may have network sockets

=> we can’t restore it separately from pstree (or just run a new 
daemon without saving the state)
=> it’s impossible to restore fuse mounts? Hope that it’s possible. :-)

9



Problem 1: mounting

● can’t move fuse mount timeslot
● let’s spawn a fake daemon and perform mounting
● .. then replace the fake daemon with the original one (once the 

process get ready!)

10



Fuse mounting

1. open /dev/fuse device
2. build mount options string with the “fd” parameter
3. mount

a. fills struct file -> private_data
refer to fuse_dev_alloc_install & fuse_fill_super_common

4. answer to FUSE_INIT request
a. fuse_send_init

5. do read/write on this fd
a. fuse_dev_read / fuse_dev_write

11



Daemon replacement

● spawn “fake daemon” process
● open /dev/fuse
● perform mounting
● save /dev/fuse file descriptor in CRIU fdstore
● once real fuse daemon is ready, kill fake and send /dev/fuse control 

fd to the real one
● That’s it!

12



Problem 2: opening files

● fake daemon is able to process only FUSE_INIT req
● what about fuse file descriptors C/R?

13



CRIU: how are files restored?

● we have file_desc_ops (restore) and fdtype_ops (dump)
○ each task -> prepare_fds -> open_fdinfos

● file_desc_ops have to provide .open callback
● … but we can’t open because of the fake daemon!
● => we need to extend daemon capabilities to allow opening files “a 

dumb” way
● => possibly, we’ll need some kernel modification here

14



fuse_inode id

● struct fuse_inode -> nodeid - unique identifier between userspace / 
kernel

● userspace daemon uses it to distinguish the files
○ so, this nodeid keeps in daemon process memory
○ => we need to restore keep it
○ fortunately, userspace may control it (FUSE_LOOKUP response)

● We also need to dump this nodeid
○ use fuse fhandles
■ at least fuse_encode_fh provides it

15



What about FUSE file mappings?

● mmap doesn’t lead to fuse request
○ just generic filemap_fault is used
○ fuse_file_apos (struct address_space_operations)
■ readpage callback leads to simple fuse READ request and filling 

page cache
● DAX is not covered here at all!

16



What about dump stage?

● CRIU freezes all processes (they are under ptrace)
● => fuse daemon gets frozen too
● => any I/O request to fuse mount leads to D-state
● Only “stat” syscall is needed on the dump stage
○ … for non-ghost and regular files

● We need something like a “pre-dump” stage but for files
○ make stat before freezing and save info
○ check that fd is the same on the dump (kcmp syscall extension?...)

17



Status & Plans

● we’ve PoC of FUSE daemon replacement
● write the initial implementation for minimalistic fuse fs C/R
● try to cover more complex cases like network-based filesystems
● … fusectl support? (opened files from it!)
● … fuseblk?
● … cuse?
● different fuse versions (ABIs) from the kernel side?

18



References

[1] CRIU github.com/checkpoint-restore/criu
[2] github.com/libfuse/libfuse
[3] Linux kernel fs/fuse

19



Thanks!

20



21


