
how can we make procfs safe?
current state of the art and a few libpathrs updates

Aleksa Sarai (SUSE)
cyphar@cyphar.com

We are executing in an environment where a user has
managed to mess with the filesystem and possibly mounts.

We want to be able to detect if we are being tricked into
operating on a different path than the one we expected.

Main usecase is container runtimes, but basically any
program operating in or on chroots would benefit.

threat model

With openat2(RESOLVE_*), any non-procfs filesystem path
can be accessed safely with various resolution restrictions.

With procfs, we require more than just the path be resolved
“reasonably”, we want a specific procfs endpoint to be
reached. The core issue is that /proc/self/environ and
/proc/self/sched exist.

what’s special about procfs?

In Linux 5.6, openat2(2) made this safe:

➢ openat(“/proc”, O_PATH)
➢ Check the f_type (fstatfs) and stx_ino (statx).
➢ openat2(<procfsfd>, “<pid>/attr/current”,
 {RESOLVE_NO_XDEV|RESOLVE_NO_SYMLINKS})

current status
(non-magiclinks)

We can’t use RESOLVE_NO_XDEV because they are almost
always crossing a mountpoint. But you can also mount on
top of them.

We can’t use RESOLVE_NO_SYMLINKS for obvious reasons.

what’s the issue with magiclinks?

It turns out this is safe since Linux 5.8 (w/CAP_SYS_ADMIN):
➢ open_tree(“/proc”, OPEN_TREE_CLONE | AT_RECURSIVE)
➢ Check the f_type (fstatfs) and stx_ino (statx).
➢ openat2(<procfsfd>, “<pid>”, {O_PATH,
 RESOLVE_NO_XDEV|RESOLVE_NO_SYMLINKS})

➢ statx(<procselffd>, “exe”, AT_SYMLINK_NOFOLLOW)
➢ Check whether STATX_ATTR_MOUNT_ROOT is set.
➢ If not, safe to use (no races because of OPEN_TREE_CLONE).

(See this example program.)

current status
(magiclinks)

https://gist.github.com/cyphar/3a8e6fa2c11c972cc31a0c724e628983

The safety of this setup relies on several undocumented
behaviours:

➢ OPEN_TREE_CLONE mounts are an O_PATH to a bind-mount and
there is no way for an external process to change any overmounts.

➢ Returned tree is an anonymous mount namespace.
➢ Even a CAP_SYS_ADMIN user in a different mountns cannot mount into it.

➢ Mount propagation to the clone is explicitly disabled.

why does this work?
(and why might it break in the future?)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ee2e3f50629f17b0752b55b2566c15ce8dafb557

Safe wrappers for procfs.
➢ Cache a safe open_tree’d procfs handle.
➢ procself_get(“exe”) – or something…

Sane C API (which then can be used with Go nicely).
➢ Go programs are used to being able to call .Close() many times.
➢ Should we remove the footgun-guards and just pass fds?

an update on libpathrs

How to model the (new and old) mount API?
➢ We want to use the new one to avoid using /proc.
➢ Should we abstract the whole thing or just expose the old one?

How much of the VFS API should be replicated by libpathrs?
➢ In theory, any operation which has AT_EMPTY_PATH is okay.
➢ How much should we trust library users to not footgun themselves?

an update on libpathrs

https://github.com/openSUSE/libpathrs

Still being worked on. Plan to port umoci to this first.

an update on libpathrs

https://github.com/openSUSE/libpathrs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

