
Experiences implementing 
zonefs support in ZenFS

Jørgen Sværke Hansen <jorgen.hansen@wdc.com>
Western Digital

mailto:jorgen.hansen@wdc.com


Introduction
•ZenFS v1/v2 uses raw block device access through libzbd to access 
zoned storage

•Add zonefs support to ZenFS to:
• Allow ZenFS users to take advantage of zonefs features such as permanent 

user permission settings
• Allow ZenFS to run in containers or virtual machines using file system 

passthrough

• In the following:
•What did it take to add support for zonefs
• Are there any performance differences between zbdlib and zonefs



ZenFS 1.0/2.0 Architecture 

ZenFS FileSystem

Meta I/O File I/O

Zone Management

LibZBD

Linux kernel

Zoned Block Devices

pr
ea

d

pw
rit

e

zo
ne

 m
gm

t

• Zone management using libZBD:
• libZBD uses ioctl calls on the 

zoned block device node to do 
zone management, e.g.:
• reset, finish, close
• obtain limits on open/active 

zones
• get zone size, capacity

• Tracks open/active zones and 
closes/finishes writable zones to 
stay within device limits

• Read/write operations
• Regular read/write operations 

directly on the zoned block 
device using LBAs

Source: https://github.com/westerndigitalcorporation/zenfs



Adapting ZenFS to use Zonefs

ZenFS FileSystem

Meta I/O File I/O

Zone Management

LibZBD

Linux kernel

Zoned Block Devices

pr
ea

d

pw
rit

e

zo
ne

 m
gm

t

• Zone management
• Add new ZenFS URI for zonefs 

mount point:
zenfs://zonefs:<zonefs mountpoint>

• Refactor zone management to 
allow different zone block device 
backends

• Read/write operations
• Upper layers assume a single LBA 

space
• Convert single LBA space access 

into per zone file access
• Management of open/active 

zones:
• Mount zonefs with option explicit-

open:
• Open zones on the ZBD tied to 

open/close of writable zone files

libzbd zonefs

zonefs

pr
ea

d

pw
rit

e

zo
ne

 m
gm

t



Zone Management in ZenFS on Zonefs
Each zone is represented by a file and the zone operations are handled as follows:
• Reset:

• Truncate to size 0
• Finish:

• Truncate to zone capacity
• Close:

• Close file
• Limits on open/active zones:

• Obtained through procfs and sysfs (introduced in Linux v5.19)
• Zone count:

• Obtained through fstat on directory
• Zone size, capacity:

• Obtained through fstat on zone file



ZenFS File Operations on Zonefs
• Each zone is a file, so LBA based access is converted to <zone, byte 

offset>:
• Read operation:
• Open zone file(s) for reading (if necessary)
• Keep FD in an LRU cache

• Write operation:
• Open zone file for writing (if necessary):
• zonefs will open the zone as well (explicit-open mount option)

• Cache FDs for zone files opened for writing until:
• an explicit zone close from the upper ZenFS layers is received
• a zone transitions to full or empty

• Closing FD triggers zonefs to close zone on ZBD



Performance Comparison

• Comparing the performance of ZenFS using zbdlib and zonefs using 
db_bench with the base performance suite from ZenFS.
• Test setup:
• Hardware: Single AMD Epyc 7313 16-core,  128GiB RAM
• Kernel version: 5.19-rc4
• NVME zoned block device:
•Western Digital Ultrastar DC ZN540 (8TB)
•Deadline scheduler enabled



Performance Comparison: Base Performance

• Zonefs and zbdlib 
performance are close:
• readwhilewriting shows the 

largest difference:
• Zonefs: 47.2K ops/s
• Zbdlib: 54.3K ops/s

0 20000 40000 60000 80000 100000 120000

fillrandom

overwrite

readwhilewriting

Operations per second 

ZenFS Base Performance Tests

zonefs zbdlib



Performance: Read Latency Distribution

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 6 10 15 22 34 51 76 110 170 25
0

38
0

58
0

87
0

130
0

190
0

29
00

44
00

66
00

99
00

140
00

22
00
0
33
00
0
50
00
0
75
00
0

110
00
0

170
00
0

N
um

be
r o

f o
pe

ra
tio

ns
 (m

illi
on

s)

Read Latency (microseconds)

Read latency distribution for readwhilewriting

zbdlib zonefs

• Average latencies 
slightly higher for 
zonefs
• A small number (<200) 

of operations have very 
high latencies (55+ 
milliseconds)



Focus on Highest Latencies

0

20

40

60

80

100

120

6600 9900 14000 22000 33000 50000 75000 110000 170000

N
um

be
r o

f o
pe

ra
tio

ns

Read Latency (microseconds)

Read latency distribution for readwhilewriting (top latencies)

zbdlib zonefs zonefs-nolock

A small number of operations have 
very long latencies!

Profiling revealed that read 
operations where blocked while 
zones are being finished:
• A finish operation is a truncate to 

size of zone capacity
• File system semantics block 

read/write operations while a 
truncate is in progress

• For a ZNS SSD, a finish can take 
hundredths of microseconds

• The ZNS SSD itself allows reads 
while a zone is being finished, so 
libdZBD implementation doesn’t 
experience this issue

• Removing read locks confirms this 
(zonefs-nolock in graph)

Future work: determine if read lock 
during truncate can be relaxed



Conclusion
• Straight forward to adapt existing existing zbdlib based code to also 

support zonefs
• Performance is roughly the same for zonefs and zbdlib, although zonefs 

may see higher latencies for operations happening concurrelty with a 
zone finish
• Code is upstreamed and available at: 

https://github.com/westerndigitalcorporation/zenfs


