Supporting zoned block devices with non-power-of-2 zone sizes

LPC 2022

Pankaj Raghav,
Software Developer at
Samsung Semiconductor Denmark Research
Agenda

➢ Zoned block device support in Linux: Past & Present
➢ Non-power-of-2 zone size support in Linux
➢ Conclusion and Future work
Part 1

Zoned block device support in Linux:
Past & Present
Definitions

zone: A contiguous range of logical block addresses that are managed as a single unit.

zoned block device: A block device that consists of multiple zone

zone size: Size of a zone

chunk sectors (Linux): A device is divided up into chunks and merging is not allowed across two chunks. Required to be a power-of-2 (po2) value when introduced. Zone size is exposed as chunk sectors in block layer
SMR drives

- Standards: ZAC/ZBC
- Overlapping tracks are grouped into bands called zones
- Zone size is always a power-of-2
- **Last zone** may have a **smaller** zone size (runt zone)
Zoned NAND flash

- Standards: NVMe ZNS, other standards
- A zone consists of multiple Erase Blocks (EBs)
- Usable LBAs in a zone is **not a power-of-2**
Definitions v2

zone: A contiguous range of logical block addresses that are managed as a single unit.

zoned block device: A block device that consists of multiple zone

zone size: Size of a zone. It needs to be **power-of-2** value to work in **Linux**

chunk sectors (Linux): A device is divided up into chunks and merging is not allowed across two chunks. Required to be a **power-of-2** value when **introduced**. Zone size is stored as chunk sectors in block layer

zone capacity: Usable logical blocks in a zone

Image taken from NVMe ZNS spec
LBA gaps

- **power-of-2 (po2) zone size** is required to work in Linux leading to **LBA gaps** in ZNS devices.
- **Reads** in LBA gaps behave like **deallocated blocks** (returns **zeroes** or a **pattern**).
- **Writes** in LBA gaps are **not allowed**.
- **SMR drives** do not have this **problem**.

A typical ZNS device layout with a po2 zone size:

![Diagram showing ZNS device layout with po2 zone size]
Part 2

Non-power-of-2 zone size support in Linux
Why?

- Gaps between zone capacity and zone size for flash based zoned devices
 - Gaps inflate the LBA range above the usable size of a block device
 - Application needs to align to zone capacity and not zone size to reap the benefits
 - Gap introduces logic in the read path
Why now?

- Linux removed the power-of-2 chunk sector constraint from v5.10[1]
- ZNS are being deployed in real environments
- New zoned standards are targeting NAND devices
 - Responsibility of the community is to ensure we support new tech without breaking backwards compatibility

[1] https://lore.kernel.org/all/20200911215338.44805-4-snitzer@redhat.com/
History

1) PO2 zone size device emulation in NVMe[1]:
 - No change needed in Userspace tools and filesystem
 - Complicates the NVMe driver
 - Cannot be reused by other drivers
 - LBA gaps

2) Add native support to block layer and filesystems[2]:
 - No LBA gaps
 - Breaks userspace tools for non-po2 zone sizes
 - BTRFS still in stabilization phase for zoned support, and superblock not power outage proof for non-po2 zone sizes

[1] https://lore.kernel.org/all/20220310094725.GA28499@lst.de/T/
GOAL

➢ Enable **non-power-of-2 zone sizes** in Linux for devices with **zone size == zone capacity**

➢ Ensure **compatibility** for non-power-of-2 zone size devices in existing filesystems and userspace applications until **native support** is added
Roadmap

Phase 1:
- Add native block layer and nvme driver support for non-po2 zone size drives
- Add a device mapper target to ensure compatibility of applications and filesystems for non-po2 zone size drives

Phase 2:
- Add native non-po2 zone size drive support to filesystems such as f2fs and btrfs, and userspace applications
Current approach

- Native block layer and NVMe driver support for non-po2 zone sizes **without performance regression** for po2 zone size devices
 - No **LBA gaps** on raw block device for non-po2 zone size devices

- Device mapper target **dm-po2zoned** to convert a **non-po2 zone size device** to a **po2 zone size target**
 - Avoids breaking userspace and filesystem for non-po2 zone size device **until native support is added**
Native block layer support

Regression

No performance regression in po2 zone size devices and regular block device*

*Test conducted on a null blk with 128M zone size device in a x86 box
Native block layer support
Progression

No performance difference between po2 zone size and non-po2 zone size devices*

*Test conducted on a null blk with **128M** and **96M** zone size devices in a **x86 box**
dm-po2zoned

Algorithm

- **Filesystems** (btrfs, f2fs)
- **Device Mapper** dm-po2zoned
- **Block I/O**
- **Device Driver**
- **Zoned device**

Device

- **Device:** 3M zone capacity and zone size
- **Target:** 3M zone capacity and 4M zone size

Zone Capacity

- Zone 0: 3M zone capacity
- Zone 1: 4M zone size

Zone Size

- Zone 0: 3M zone size
- Zone 1: 4M zone size

Device: 3M zone capacity and zone size

Target: 3M zone capacity and 4M zone size
dm-po2zoned
Handling bio in the emulated zone area

Other operations:
- Error

Read:
- split the bio across emulation boundary and fill zeroes on the split bio in the emulated area
dm-po2zoned

Device mapper cost: 8~15% average performance hit

*Test conducted on a null blk with 96M zone size device
Conclusion

- Zoned block devices with non-po2 zone sizes can be safely supported in Linux
 - **No regression** in the **hot path** for **po2 zone size** devices
 - **Applications** can use **dm-po2zoned** to consume **non-po2 zone** size block devices **until native support** is added
Status & Future work

Status:
- Currently in v13 revision[1]
- Tested with blktest, zonefs test suite and fio

Future work:
- Add native support to non-po2 zone sizes in filesystems(such as btrfs and f2fs) and userspace applications
- Add non-po2 zone size support in SCSI for Zoned UFS[2]

[2] https://lore.kernel.org/lkml/024d16ac-d685-0fcf-1ad3-e99946852b03@acm.org/
Acknowledgments

Reviewers

➢ Damien Le Moal
➢ Hannes Reinecke
➢ Bart Van Assche
➢ Johannes Thumshirn
➢ Mike Snitzer
Questions?

Help by reviewing the patchset here[1] to make it a part of the next release

Extras
Native block layer support
Regression

No **performance regression** in **po2 zone size** devices and regular block device*

IO DEPTH	Without patches	4	8	DIFF	DIFF
Seq. Write (KIOPS)	Without patches	416	567		±1%
	With patches	417	568		
Seq. read(KIOPS)	Without patches	481	660		±1%
	With patches	480	661		
Random read(KIOPS)	Without patches	440	530		
	With patches	438	529		

*Test conducted on a null blk with **128M** zone size device in a x86 box
Native block layer support

Progression

No **performance difference** between **po2 zone size** and **non-po2 zone size** devices*

<table>
<thead>
<tr>
<th>IO DEPTH</th>
<th></th>
<th>4</th>
<th>8</th>
<th>DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq. Write (KIOPS)</td>
<td>non-po2</td>
<td>417</td>
<td>566</td>
<td></td>
</tr>
<tr>
<td></td>
<td>po2</td>
<td>417</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>Seq. read(KIOPS)</td>
<td>non-po2</td>
<td>483</td>
<td>662</td>
<td>±1%</td>
</tr>
<tr>
<td></td>
<td>po2</td>
<td>482</td>
<td>663</td>
<td></td>
</tr>
<tr>
<td>Random read(KIOPS)</td>
<td>non-po2</td>
<td>440</td>
<td>533</td>
<td></td>
</tr>
<tr>
<td></td>
<td>po2</td>
<td>438</td>
<td>532</td>
<td></td>
</tr>
</tbody>
</table>

*Test conducted on a null blk with **128M** and **96M** zone size devices in a **x86 box**
dm-po2zoned

Device mapper cost: 8~15% average performance hit

<table>
<thead>
<tr>
<th>IO DEPTH</th>
<th>4</th>
<th>8</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq. Write (KIOPS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native non-po2</td>
<td>417</td>
<td>566</td>
<td>-8.2%</td>
</tr>
<tr>
<td>dm-po2zone</td>
<td>393</td>
<td>505</td>
<td></td>
</tr>
<tr>
<td>Seq. read(KIOPS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native non-po2</td>
<td>483</td>
<td>666</td>
<td>-15.65%</td>
</tr>
<tr>
<td>dm-po2zone</td>
<td>427</td>
<td>534</td>
<td></td>
</tr>
<tr>
<td>Random read(KIOPS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native non-po2</td>
<td>440</td>
<td>533</td>
<td></td>
</tr>
<tr>
<td>dm-po2zone</td>
<td>404</td>
<td>465</td>
<td>- 10.5%</td>
</tr>
</tbody>
</table>

Test conducted on a null blk with 96M zone size device