
SSDFS: ZNS SSD ready file system with zero GC overhead

Viacheslav Dubeyko (STE team)
viacheslav.dubeyko@bytedance.com

2

Content

1. Problem
2. Design goals
3. Testing methodology
4. Benchmarking results
5. Future work
6. Conclusion

3

Problem

Write amplification issue

FTL GC overhead

FS GC overhead

Retention issue

SSD lifetime reduction Performance degradation

NILFS2 F2FS

Open zone Close zone

Write I/O

Re-init
(erase)

Zone

ZNS SSD model

Limited number of open/active zones

Read disturbance issue

4

Why yet another file system?
NILFS2
- in-place update superblocks
- COW policy (LFS)
- user-space GC
- snapshots

F2FS
- in-place update metadata area
- COW area
- kernel-space GC
- dual checkpoints
- transparent file compression
- file system level encryption

bcachefs
- Copy on write (COW) - like zfs or btrfs
- COW b-trees + journal
- Copying garbage collection
- Full data and metadata checksumming
- compression
- Multiple devices
- Replication + Erasure coding
- encryption
- snapshotsSSDFS

- Pure LFS (COW policy) + ZNS SSD ready
- compression + delta-encoding + compaction scheme
- migration scheme + migration stimulation + noGC overhead
- deduplication (not fully implemented)
- post-deduplication delta-compression (planned)
- prolong SSD lifetime
- snapshots (not fully implemented)
- recoverfs (reconstruct file system state -> heavily corrupted volume)
- employ parallelism of multiple NAND dies

reliability performance reliability + performance

1. prolong SSD lifetime

2. reliability

3. performance

SSDFS

5

SSDFS design goals
SSDFS is flash-friendly and ZNS compatible open-source kernel-space file system:

Prolong SSD lifetime

Decrease write amplification
- Compression
- Compaction scheme
- Delta-encoding technique
- Deduplication technique
- Post-deduplication delta-compression

Exclude GC overhead
- Exclude FTL GC responsibility
- Minimize FS GC activity

Decrease retention issue
- Smart management of “cold” data
- Efficient TRIM policy

Strong reliability

- Checksumming support
- Metadata replication
- Snapshots support
- Erasure coding support
- Reconstruct corrupted file system

31 2

Stable file system performance

- Employ parallelism of multiple NAND dies
- Multiple PEBs in segment
- ZeroGC overhead
- Minimized write amplification
- B-trees in metadata
- Efficient TRIM policy

6

SSDFS configuration model

…PEB PEB …PEB PEB…

Thread 1 Thread N

PEB group 1 PEB group N

… …… … ………

Segment 1 Segment NLogical block

PEB (Physical Erase Block)

LEB (Logical Erase Block)

or

Zone

7

SSDFS architecture (logical vs. physical view)

PEB PEB… PEB PEB… PEB PEB……Physical view

header footer

full log partial log
header

block bitmap

footer

payload

offset translation table

log

LEB LEB… LEB LEB… LEB LEB……Logical view

Segment view
Superblock

segment
Mapping table

segment
Segment bitmap

segment
Leaf node
segment

Hybrid node
segment

Index node
segment

User data
segment

segment

Logical
Erase
Block

Physical
Erase
Block

8

SSDFS architecture (metadata)

Superblock
segment

Mapping table
segment

Segment bitmap
segment

Leaf node
segment

Hybrid node
segment

Index node
segment

User data
segment

Superblock

Log

Mapping
table

LEB
PEB source

PEBdestination

Segment
bitmap

RootIndex
node

Hybrid
node

Leaf
node

B-tree

Inodes
b-tree

Inode

Dentries
b-tree

Extents
b-tree

Xattrs
b-tree

9

Migration scheme (PEB lifetime)

PEB 1 PEB 2 PEB N…

1

Map

2

Create data

3

Start migration

4

Update + migrate

5

Finish migration

6

Erase

Migration scheme:
1. Map LEB to PEB
2. Create/Fill by data until

PEB exhaustion
3. Start migration (PEB1 ->

PEB2)
4. Update data + migrate

valid data until PEB1
complete invalidation

5. Finish migration
6. Set PEB1 pre-erased or

TRIM/erase PEB1
7. Go to step 3 if PEB2 is

exhausted

7

Start migration

10

Current zones

Main superblock zone Backup superblock zone

Mapping table zone Migration zone

Segment bitmap zone Migration zone

Leaf b-tree node zone Migration zone

Hybrid b-tree node zone Migration zone

Index b-tree node zone Migration zone

User data (create) zone User data (update) zone

Migration scheme

Migration scheme

Migration scheme

Migration scheme

Migration scheme

Moving schemeCurrent
zone(s)

Current
zone(s)

Minimum: 14 open/active zones

11

Moving scheme (ZNS SSD only)

Current user data zoneCreate/Add data

Used user data zoneUpdate data Current user data
update zone

1

Start migration

2

Move data

Extents tree

3
Update
extent
metadata

Invalidated extents tree
4Add old extent

5 Finish migration

6Set pre-erased / Erase

1. Start migration
2. Move valid/updated data to current user data update

zone
3. Update extent metadata in extents tree
4. Add old extent metadata into invalidated extents tree
5. Finish migration after all valid data will be moved under

update I/O requests pressure
6. Set pre-erased or erase completely invalidated zone

12

Testing use-case(s)

N N N … N

mount unmount

Total

Testing sequence:
- format partition (mkfs - default settings)
- blktrace <partition>
- while (iterations < (Total/N)) {
 mount();
 while (items < N) {
 execute_use_case();
 }
 unmount();
 }
- stop blktrace

13

Methodology

Lifetime =
Erase

limit

Erase
total

Erase
limit

= Capacity EB * Erase Block limit

Erase
total

= EraseFTL GC EraseTRIM EraseFS GC
Eraseread disturbance Eraseretention++ + +

EraseFTL GC = Write
I/O

EB
- PayloadEB

EraseFS GC = PayloadEB - Valid DataEB

Eraseread disturbance =
Read

I/O

EB

Thresholddisturbance

Eraseretention =
Timeuse-case

3 months
* PayloadEB

PayloadEB
= Erase Blockunique

- TRIMEB

14

Write I/O (create + update + delete)
Metadata case 64 bytes file case

SSDFS is capable to generate smaller amount (1.5x - 20x) of write I/O requests comparing with other file systems.

15

TRIM (create + update + delete) - erase blocks
Metadata case 64 bytes file case

SSDFS introduces highly efficient
TRIM policy that:
(1) eliminate FTL GC activity,
(2) decrease retention issue.

Migration scheme builds the
TRIM efficiency and eliminates
the necessity of FS GC activity.
Even multiple mount/unmount
operations cannot affect the
efficiency of TRIM policy.

16

Payload (create + update + delete) - erase blocks
Metadata case

64 bytes file case

128KB erase block

128KB erase block

8MB erase block

8MB erase block

Metadata case

64 bytes file case

SSDFS is capable to create smaller (2x - 20x) payload.
However, SSDFS can generate more payload for
some use-cases (for example, 10-10000, 100-10000)
compared with ext4, xfs, btrfs.

17

FTL GC (create + update + delete) - erase blocks
Metadata case 64 bytes file case

128KB erase block 128KB erase block

FTL responsibility (number of erase blocks) - metadata FTL responsibility (number of erase blocks) - 64 bytes file

SSDFS doesn’t create FTL GC responsibilities because it’s pure LFS file system without any in-place update area.

18

FS GC (create + update + delete) - erase blocks
Metadata case 64 bytes file case

SSDFS: GC I/O is absent because of migration scheme and efficient TRIM policy.

F2FS introduces more FS GC responsibility (1.2x - 5x) compared with NILFS2.
However, NILFS2 introduces more FS GC responsibility (1.3x - 2x) compared with F2FS for 10-10000 use-case.

19

Write amplification (create + update + delete)
Metadata case

128KB erase block 8MB erase block

64 bytes file case128KB erase block 8MB erase block

Metadata case

64 bytes file case

w/o GC I/O

w/o GC I/O

SSDFS is capable to decrease a write
amplification issue 1.5x - 20x comparing with
other file systems.

20

Read disturbance (create + update + delete)
Metadata case128KB erase block 8MB erase block

64 bytes file case
128KB erase block 8MB erase block

Metadata case

64 bytes file case

SSDFS generates smaller amount of read I/O
● (1.5x - 50x) compared with nilfs2
● (1x - 8x) compared with xfs

SSDFS generates bigger amount of read I/O:
● (1x - 20x) compared with ext4
● (1x - 16x) compared with btrfs
● (1x - 26x) compared with f2fs

SSDFS generates more read I/O for bigger erase
blocks with smaller partial logs. Offsets translation
table is the main contributor to this issue.
Solution: store full offset translation table in every
log + compress offset translation table.

21

Retention issue (create + update + delete)
Metadata case128KB erase block 8MB erase block

128KB erase block 8MB erase block
64 bytes file case

Metadata case

64 bytes file case

SSDFS is capable to introduce smaller retention
issue (in average):

● (1x - 200x) compared with ext4
● (1x - 200x) compared with xfs
● (1x - 400x) compared with btrfs
● (2x - 600x) compared with f2fs
● (1x - 200x) compared with nilfs2

However, SSDFS can introduce bigger retention
issue for some use-cases (for example, 10-10000) -
big erase blocks with small partial logs. This issue
can be fixed by offsets translation table
optimization.

22

SSD lifetime (create + update + delete)
Metadata case128KB erase block 512KB erase block

512KB erase block128KB erase block
64 bytes file case

Metadata case

64 bytes file case

SSDFS is capable to prolong SSD lifetime:
● (1.4x - 7.8x) compared with ext4
● (15x - 60x) compared with xfs
● (6x - 12x) compared with btrfs
● (1.5x - 7x) compared with f2fs
● (1x - 4.6x) compared with nilfs2

SSDFS can prolong SSD lifetime
2x - 10x for real-life use-cases

23

Duration (seconds)
128KB erase block 512KB erase block 8MB erase block

128KB erase block 512KB erase block 8MB erase block

24

Performance analysis (SSDFS)
128KB erase block 512KB erase block 8MB erase block

Read I/O (8MB erase block)
● SSDFS has been tested in debug mode.
● SSDFS still has not fully optimized code.
● Even now SSDFS performance looks comparable with other file systems.
● Currently, SSDFS looks like read dominant.
● The main contributor of read-dominant nature is offset translation table.
● Solution:

○ Store full offset translation table in every log.
○ Compress offset translation table.
○ Employ binary search to find the latest log in a PEB.

25

Future work

● Analyze benchmark results + btrfs compression + bcachefs
● Bug fix
● Finish deduplication support implementation
● Finish snapshot support implementation
● Post-deduplication delta-compression implementation
● fsck implementation
● recoverfs implementation
● ZNS SSD support code stabilization

● Fix read I/O performance degradation
● Solution:

○ Store full offset translation table in
every log.

○ Compress offset translation table.
○ Employ binary search to find the

latest log in a PEB.

SSDFS tools: https://github.com/dubeyko/ssdfs-tools.git
SSDFS driver: https://github.com/dubeyko/ssdfs-driver.git
Linux kernel: https://github.com/dubeyko/linux.git

ZNS SSD support -> ssdfs-zns-support branch (ssdfs-driver.git)

26

Conclusion
● SSDFS is natively compatible with ZNS SSD model. However, it will be good to have number

of open/active zones equals to zone capacity of storage device.
● SSDFS generates smaller amount of write I/O requests - (1.5x - 20x) in average.
● SSDFS introduces highly efficient TRIM policy. Even multiple mount/unmount operations

cannot affect the efficiency of TRIM policy.
● SSDFS is capable to create smaller (2x - 20x) payload.
● SSDFS doesn’t create FTL GC responsibilities because it’s pure LFS file system without any

in-place update area.
● GC I/O is absent because of migration scheme and efficient TRIM policy.
● SSDFS decreases write amplification issue - (1.5x - 20x) in average.
● SSDFS is capable to introduce smaller retention issue.
● SSDFS can prolong SSD lifetime 2x - 10x for real-life use-cases.
● SSDFS looks like read dominant. SSDFS generates more read I/O for bigger erase blocks with

smaller partial logs. However, there is a way to fix this issue.

Thank You

Questions???

27

