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they do not reflect the views of his employers
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I, SeongJae Park <sj@kernel.org>
● Just call me SJ, or whatever better for you to pronounce

● Kernel Development Engineer at Amazon Web Services

● Interested in the memory management and the parallel programming

● Maintaining DAMON

https://damonitor.github.io/


  

Overall Motivation: Access-aware Linux Kernel
● DRAM is a major infrastructure expense

● We can reduce the expense by improving memory efficiency

● We can do that if we can make better data management decision

● We can do that if we can estimate data access patterns

● We can do that if we can aware of current access patterns, and 
operate the system with the information

● Linux is an Access-aware OS kernel, but apparently could do better

● And, we could make it highly user-space-controllable while just works



  

Overview
● Current Status

– DAMON

– DAMOS

– DAMON Modules

– User-space, Testing, and Community

● Future Plans
– DAMON/DAMOS Extension and Improvements

– DAMON Auto-tuning and Modules Unification

– Misc Kernel-side TODOs

– More User-space Components and Testing

● Conclusion



  

DAMON: Motivation
● Data access monitoring overhead is high and unbounded

– High overhead can also affect monitoring results accuracy
● Maybe the uncertainty principle can be applied here

– Unbounded overhead is inherent in fixed granularity monitoring
● As the amount of data to monitor increases, overhead grows

● High overhead is inevitable for precise large amount of information
– Do we really paying for only what we need? No one price plan fits all

● No simple and centralized interface for data access monitoring



  

DAMON: Data Access MONitor
● A data access monitoring framework of Linux kernel

– Aims to be the simple and centralized access monitoring interface

● Allows users to know which memory area is how frequently accessed
– Let users set the min accuracy and max overhead

– DAMON makes the best-effort accuracy / overhead trade-off
● Multiple mechanisms could be used for this
● At the moment, Adaptive access pattern-oriented regions adjustment 

mechanism is the default and single mechanism for this
(For details, refer to the doc or ksummit’20 DAMON talk)

● The default mechanism allows bounded overhead regardless of the monitoring 
target memory size

● Experimental efficient page granularity monitoring mechanism was already 
implemented; Not merged in due to the absence of real use case so far

● Allows easy extension and flexible customization

https://docs.kernel.org/vm/damon/design.html#address-space-independent-core-mechanisms
https://lpc.events/event/7/contributions/659/
https://lore.kernel.org/linux-mm/20201216094221.11898-14-sjpark@amazon.com/


  

DAMON: Evaluation
● DAMON is lightweight

– On a production setup, DAMON was able to check accesses to entire 
system memory (68.60 GB) every 5 msecs with <1% single CPU time 
(scans 68.6GB / (5ms * 1%) = 1,372 TB/s)

● Note: DAMON overhead does not increase as the memory size increases

● DAMON is accurate
– Shows sane monitoring results with realistic benchmark workloads and 

production workloads (found 7GB working set and 4KB hottest region)

– Identifying hot memory regions from DAMON results with human eyes 
and modifying the program to do `mlock()` the regions achieves up to 
2.55x speedup under memory pressure[1,2]

https://quip-amazon.com/bHanARgQyKg9/DAMON-Proactive-Trial-Report-for-S3
https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html
https://dl.acm.org/citation.cfm?id=3368125
https://linuxplumbersconf.org/event/4/contributions/548/
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DAMON: History and Status
● 2020-01: RFC v1 posted

● 2021-05: Merged in Amazon Linux 2 >=5.4 Kernels

● 2021-09: Merged in v5.15-rc1

● 2022-04: Enabled in Android GKI

https://android.googlesource.com/kernel/common/+/0496c13ded02bd72426d189b777bf303fe490f62
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DAMOS: Motivation
● Now DAMON-based optimizations are available (by both kernel and user)

– Common steps for the optimizations would be…

– Run DAMON, get/analyze monitoring results, and make some memory 
management decisions (e.g., reclaim cold pages, use THP for hot pages, …)

● Not so ideal because
– Steps could be repetitive

– User-space approach could be inefficient due to kernel-user context switches
● BPF-like approaches would be available, though

● Couldn’t we offload the works to DAMON in the kernel?
– Don’t repeat yourself

– Use the information directly from where it generated



  

DAMOS: DAMON-based Operation Schemes
● A core feature of DAMON for reducing the repetitive works

● Receives ‘schemes’; each scheme is constructed with
– Target access pattern

● Ranges of size, access frequency, and age of memory regions

– Memory management action, e.g., PAGEOUT, HUGEPAGE, ...

● DAMOS automatically finds the memory region of the target pattern 
using DAMON and applies the action to the region

● Now users can make DAMON-based optimizations with no-code

# format is:
# <min/max size> <min/max frequency (0-100)> <min/max age> <action>
#
# if a region of size >=4KB didn’t accessed for >=2mins, page out
4K max      0 0     2m max pageout



  

DAMOS: Evaluation
● Implemented main ideas of two state-of-the-arts works with DAMOS

– Access-aware THP collapse/split
● The original work was accepted to a top-tier conf (OSDI’16)
● Re-implemented with two lines of DAMOS config
● Our version removes 76.15% of THP memory bloats

while preserving 51.25% of THP speedup

– Proactive reclamation
● The original work was accepted to another top-tier conf (ASPLOS’19) and 

being used for Google fleets
● Re-implemented with one line of DAMOS config
● reduces 93.38% of residential sets and 23.63% of system memory footprint

while incurring only 1.22% runtime overhead in the best case.

– For more details, please read the report

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://dl.acm.org/doi/10.1145/3297858.3304053
https://damonitor.github.io/doc/html/latest/vm/damon/eval.html


  

DAMOS: More Features For Production
● For productions that safety-critical, DAMOS provides additional features

● Time/space quota per a given time interval
– DAMOS try to use CPU time no more than the given time quota

– DAMOS try to apply the action to memory no more than the space quota

● Regions prioritization
– Under the quota, DAMOS applies the action to prioritized regions first

– Prioritization logic can be customized for different DAMOS actions
● In case of RECLAIM, older and colder pages are prioritized by default

● Three watermarks (high, mid, low) with user-specified metric (e.g., freemem)
– Deactivate if the metric > high_watermark or metric < low_watermark

– Activate if the metric < mid_watermark and metric > low_watermark

– Avoid DAMOS using any resource under a peaceful or a catastrophic situation

● With online tuning, these opens some interesting capabilities



  

DAMOS: History and Status
● 2020-02: RFC v1 posted

● 2021-05: Merged in Amazon Linux 2 >=5.4 Kernels

● 2021-11: Merged in v5.16-rc1

● 2022-04: Enabled in Android GKI

https://android.googlesource.com/kernel/common/+/0496c13ded02bd72426d189b777bf303fe490f62
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DAMON Modules: Motivation
● A common question: Policy in user-space or kernel-space?

– Only user-space policies could make ultimate result
● True for some cases, might not be true for some other cases
● Requires non-trivial user-space efforts investment, though

– Kernel-space policies could be worthy to try
● Useful for someone who cannot get help from the user-space ultimate policy
● Kernel just works at least reasonably

● DAMON aims to convince both; It hence provides
– Highly tunable and flexible user interface via sysfs, and

– DAMOS application static kernel modules for general use cases
● Supposed to be useful in general without complex tuning
● Can still be highly tuned via parameters, but the default values are supposed 

to make no fantastic benefits but some, or at least no harm



  

DAMON_RECLAIM
● DAMON-based proactive reclamation kernel module

– Basically same to the previously shown DAMOS schemes

● Written using DAMOS’ simple kernel API
– Excepting the code for module parameters, only 188 lines of code

– SJ live-coded almost similar one in 10 minutes at ksummit’21

● Aims to be used on the production
– Ensure the safety using the quotas and watermarks

– The quotas and watermarks are conservatively tuned
● Aims to make no fantastic benefits but some with no harm
● Can be tweaked via module parameters

https://lpc.events/event/11/contributions/984/


  

DAMON_LRU_SORT
● Yet another DAMON module

● Sorts pages in LRU lists for better performance
– Can be used for proactive reclamation improper situations

● E.g., Having slow or restrictive storage devices

– `mark_page_accessed()` hot pages and `deactivate_page()` cold pages
● We could do more fine-grained LRU lists-adjustment in a future

● Reduces 10-20% memory pressure stall time (memory PSI, some) 
under artificial memory pressure



  

DAMON Modules: History and Status
● 2021-06: DAMON_RECLAIM RFC v1 posted

● 2021-10: DAMON_RECLAIM merged in Amazon Linux 2 >=5.10 
kernel

● 2022-01: DAMON_RECLAIM merged in v5.16-rc1

● 2022-04: DAMON_RECLAIM Enabled in Android GKI

● 2022-05: DAMON_LRU_SORT RFC v1 posted

● 2022-08: DAMON_LRU_SORT merged in v6.0-rc1

https://android.googlesource.com/kernel/common/+/0496c13ded02bd72426d189b777bf303fe490f62
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DAMON User-space Applications
● DAMON provides two user interfaces based on debugfs and sysfs

– Those are for user space tools implementation, not for manual use

– The debugfs interface will be deprecated after next LTS is released

● SJ develops and maintains his own user space tool
– Available at Github (https://github.com/awslab/damo) and PyPI (

https://pypi.org/project/damo/)

– Provides all DAMON features with human-friendly interface

● Alibaba developed their own DAMON user-space tool: 
https://github.com/aliyun/data-profile-tools

https://docs.kernel.org/admin-guide/mm/damon/usage.html#debugfs-interface
https://docs.kernel.org/admin-guide/mm/damon/usage.html#sysfs-interface
https://github.com/awslab/damo
https://pypi.org/project/damo/
https://github.com/aliyun/data-profile-tools


  

Testing DAMON
● Maintains open source tests suite for DAMON: 

https://github.com/awslabs/damon-tests
– Provides functionality tests and performance tests

● Functionality tests are based on selftests and kunit tests
● Performance tests use PARSEC3/SPLASH-2X workloads

– We run
● Functionality tests for every update of SJ’s hacking tree, >=v5.15.y, mm-

unstable, and the mainline
● Performance tests for latest SJ’s hacking tree every day

● Did some fuzzing tests
– Made DAMON debugfs interface syzkaller description and upstreamed

– No DAMON sysfs interface syzkaller description yet, though

https://github.com/awslabs/damon-tests
https://github.com/google/syzkaller/blob/master/sys/linux/damon.txt


  

DAMON Community
● DAMON is developed by its open and (hopefully) inclusive community

● Several people, institutes, and companies are participating

● Dedicated open mailing list: damon@lists.linux.dev

● Open, regular, and informal virtual bi-weekly meeting series
– https://lore.kernel.org/damon/20220810225102.124459-1-sj@kernel.org/

– We will have an in-person instance of it 17:00 today at Meeting Room 9

– Aims to be used for aligning participants’ conflicting goals and prioritizing 
TODO items

mailto:damon@lists.linux.dev
https://lore.kernel.org/damon/20220810225102.124459-1-sj@kernel.org/
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Extending DAMON
● Can easily extend for various address spaces and use cases

– Need to implement new monitoring operations set for the use case

● Currently, monitoring operations for virtual address spaces and the 
physical address space are available

● Imaginable extensions include
– More efficient page-granularity system monitoring

● Current page-granularity monitoring is only for proof of concepts
● We already implemented an experimental version of this

– Monitoring operations using IBS or LRU-position

– Read-only, write-only, cgroups, for only specific file-backed memory, ...

https://lore.kernel.org/linux-mm/20201216094221.11898-14-sjpark@amazon.com/
https://developer.amd.com/wordpress/media/2012/10/AMD_IBS_paper_EN.pdf


  

Improving DAMON Accuracy/Overhead
● Adaptive monitoring attributes adjustment and regions splitting

– Find struggling regions and apply aggressive adaptation

– Page-gran monitoring will be re-implemented to be used for comparison

● Remapping regions based on monitoring results, to sorted by hotness
– The spatial locality assumption of memory regions will be more 

reasonable

– DAMON-internal address space would be needed for usual cases

Hot Cool Warm Cold

Hot CoolWarm Cold

User-provided address space  
(page-gran management)

DAMON address space
(DAMON region-based management)

User-provided address space  
(page-gran management)

DAMON address space
(DAMON region-based management)



  

DAMOS Allow/Deny-list
● DAMON is simple

– No special care of anon, file-backed, cgroups, but only access pattern

● Users know some important memory areas that shouldn’t be 
distracted by DAMOS
– Users could do `madvise()` or `mlock()` or somewhat

– DAMOS could have allow-list and deny-list for such regions
● E.g., “do the access-aware proactive reclamation for system memory but 

these processes, these files, and these cgroups”



  

More DAMOS Actions and Modules
● DAMON might be able to be used to help

– Efficient but performant THP promotion/demotion

– Page migration target (for compaction or CMA) selection
● Cold pages might be not pinned

– Tiered-memory management
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DAMON Modules Unification
● DAMON modules are exclusive at the moment

● Would be better to unify all the modules
– So that all modules can be enabled in one step: Just working kernel

● Say, CONFIG_ACCESS_AWARE_MM?

– But, should still be able to be used separately (no behavior/interface 
change)

– Support of multiple DAMON contexts on single kdamond is required



  

DAMON Auto-tuning
● DAMON provides not small number of knobs, tuning is not so trivial

– Adding yet other more intuitive knobs for auto-tuning other knobs could help

– E.g., a monitoring time quota for `nr_{min,max}_regions` auto-tuning

● Transparent Memory Offloading (TMO) like Auto-tuning of 
DAMON_RECLAIM would be possible and seems promising
– Monitor PSI and adjusts DAMOS quota

– Running (too-)simplified and aggressive TMO implementation with 
DAMON_LRU_SORT reduces PSI 10-20%

● Might be able to be generalized for general DAMOS
– Already available via online tuning, but why not make kernel just work?

– Provides feedback interface, let users put metric like PSI that really matters to 
them; DAMON does the auto-tuning based on the metric value

– Allow special keywords for kernel-better-collecting metrics like PSI
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Misc Kernel-side TODO Items
● Non-root user DAMON interface

● DAMON running on no kdamond but a user-process

● Efficient DAMON monitoring results exposing

● Querying regions of specific access pattern



  

More User-space Components
● Out of SJ’s hand; waiting for user space experts’ contributions

● User-space library, say, libdamon
– While preparing for DAMON system call, let’s hide the gap

● Hand over of the official DAMON user-space tool
– SJ is bad at user space programming

– Alibaba’s datop might be the one candidate?

● More tools
– Showing access pattern with callstack will give us interesting profiling cap

– User-space optimizer/auto-tuner? RSS/WSS based OOM killer?

● More services
– DAMON/DAMOS as-a Service

● Working set size monitoring/alarming/auto scaling/...
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Testing
● DAMON tests suite

– Use of more workloads

– More functionality tests case

– More unit tests

– Integrating in the kernel CI systems

● Fuzzing Support
– DAMON sysfs syzkaller description should be made



  

Summary
● Current Status

– In the kernel: DAMON, DAMOS, DAMON Modules

– In userspace: >=2 Tools

– In community: open and (hopefully) inclusive culture and chat series

● Future Plans
– Extended and improved DAMON/DAMOS/DAMON Modules

– Convenient and intuitive semi-auto tuning of DAMON/DAMOS

– Unified DAMON Modules: Access-aware LInuX Assistant

– More user-space libraries, tools, and services

– The community!



  

Questions?

https://kids.nationalgeographic.com/content/dam/kids/photos/animals/Birds/A-G/adelie-penguin-jumping-ocean.ngsversion.1396530997321.adapt.1900.1.jpg

● You can also use below
– Project page: https://damonitor.github.io
– Kernel docs for admin and programmers
– DAMON mailing list: damon@lists.linux.dev
– DAMON Beer/Coffee/Tea Chat
– The maintainer: sj@kernel.org

https://kids.nationalgeographic.com/content/dam/kids/photos/animals/Birds/A-G/adelie-penguin-jumping-ocean.ngsversion.1396530997321.adapt.1900.1.jpg
https://damonitor.github.io/
https://docs.kernel.org/admin-guide/mm/damon/index.html
https://docs.kernel.org/mm/damon/index.html
mailto:damon@lists.linux.dev
https://lore.kernel.org/damon/20220810225102.124459-1-sj@kernel.org/
mailto:sj@kernel.org
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