

DAMON:
Current Status and Future Plans

SeongJae Park <sj@kernel.org>

Kernel Summit @

Disclaimer

● The views expressed herein are those of the speaker;
they do not reflect the views of his employers

https://twitter.com/sjpark0x00/status/1295387149018300419/photo/1

https://twitter.com/sjpark0x00/status/1295387149018300419/photo/1

I, SeongJae Park <sj@kernel.org>
● Just call me SJ, or whatever better for you to pronounce

● Kernel Development Engineer at Amazon Web Services

● Interested in the memory management and the parallel programming

● Maintaining DAMON

https://damonitor.github.io/

Overall Motivation: Access-aware Linux Kernel
● DRAM is a major infrastructure expense

● We can reduce the expense by improving memory efficiency

● We can do that if we can make better data management decision

● We can do that if we can estimate data access patterns

● We can do that if we can aware of current access patterns, and
operate the system with the information

● Linux is an Access-aware OS kernel, but apparently could do better

● And, we could make it highly user-space-controllable while just works

Overview
● Current Status

– DAMON

– DAMOS

– DAMON Modules

– User-space, Testing, and Community

● Future Plans
– DAMON/DAMOS Extension and Improvements

– DAMON Auto-tuning and Modules Unification

– Misc Kernel-side TODOs

– More User-space Components and Testing

● Conclusion

DAMON: Motivation
● Data access monitoring overhead is high and unbounded

– High overhead can also affect monitoring results accuracy
● Maybe the uncertainty principle can be applied here

– Unbounded overhead is inherent in fixed granularity monitoring
● As the amount of data to monitor increases, overhead grows

● High overhead is inevitable for precise large amount of information
– Do we really paying for only what we need? No one price plan fits all

● No simple and centralized interface for data access monitoring

DAMON: Data Access MONitor
● A data access monitoring framework of Linux kernel

– Aims to be the simple and centralized access monitoring interface

● Allows users to know which memory area is how frequently accessed
– Let users set the min accuracy and max overhead

– DAMON makes the best-effort accuracy / overhead trade-off
● Multiple mechanisms could be used for this
● At the moment, Adaptive access pattern-oriented regions adjustment

mechanism is the default and single mechanism for this
(For details, refer to the doc or ksummit’20 DAMON talk)

● The default mechanism allows bounded overhead regardless of the monitoring
target memory size

● Experimental efficient page granularity monitoring mechanism was already
implemented; Not merged in due to the absence of real use case so far

● Allows easy extension and flexible customization

https://docs.kernel.org/vm/damon/design.html#address-space-independent-core-mechanisms
https://lpc.events/event/7/contributions/659/
https://lore.kernel.org/linux-mm/20201216094221.11898-14-sjpark@amazon.com/

DAMON: Evaluation
● DAMON is lightweight

– On a production setup, DAMON was able to check accesses to entire
system memory (68.60 GB) every 5 msecs with <1% single CPU time
(scans 68.6GB / (5ms * 1%) = 1,372 TB/s)

● Note: DAMON overhead does not increase as the memory size increases

● DAMON is accurate
– Shows sane monitoring results with realistic benchmark workloads and

production workloads (found 7GB working set and 4KB hottest region)

– Identifying hot memory regions from DAMON results with human eyes
and modifying the program to do `mlock()` the regions achieves up to
2.55x speedup under memory pressure[1,2]

https://quip-amazon.com/bHanARgQyKg9/DAMON-Proactive-Trial-Report-for-S3
https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html
https://dl.acm.org/citation.cfm?id=3368125
https://linuxplumbersconf.org/event/4/contributions/548/

DAMON: Evaluation
● DAMON is lightweight

– On a production setup, DAMON was able to check accesses to entire
system memory (68.60 GB) every 5 msecs with <1% single CPU time
(scans 68.6GB / (5ms * 1%) = 1,372 TB/s)

● Note: DAMON overhead does not increase as the memory size increases

● DAMON is accurate
– Shows sane monitoring results with realistic benchmark workloads and

production workloads (found 7GB working set and 4KB hottest region)

– Identifying hot memory regions from DAMON results with human eyes
and modifying the program to do `mlock()` the regions achieves up to
2.55x speedup under memory pressure[1,2]

https://quip-amazon.com/bHanARgQyKg9/DAMON-Proactive-Trial-Report-for-S3
https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html
https://dl.acm.org/citation.cfm?id=3368125
https://linuxplumbersconf.org/event/4/contributions/548/

DAMON: Evaluation
● DAMON is lightweight

– On a production setup, DAMON was able to check accesses to entire
system memory (68.60 GB) every 5 msecs with <1% single CPU time
(scans 68.6GB / (5ms * 1%) = 1,372 TB/s)

● Note: DAMON overhead does not increase as the memory size increases

● DAMON is accurate
– Shows sane monitoring results with realistic benchmark workloads and

production workloads (found 7GB working set and 4KB hottest region)

– Identifying hot memory regions from DAMON results with human eyes
and modifying the program to do `mlock()` the regions achieves up to
2.55x speedup under memory pressure[1,2]

https://quip-amazon.com/bHanARgQyKg9/DAMON-Proactive-Trial-Report-for-S3
https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html
https://dl.acm.org/citation.cfm?id=3368125
https://linuxplumbersconf.org/event/4/contributions/548/

DAMON: History and Status
● 2020-01: RFC v1 posted

● 2021-05: Merged in Amazon Linux 2 >=5.4 Kernels

● 2021-09: Merged in v5.15-rc1

● 2022-04: Enabled in Android GKI

https://android.googlesource.com/kernel/common/+/0496c13ded02bd72426d189b777bf303fe490f62

Overview
● Current Status

– DAMON

– DAMOS

– DAMON Modules

– User-space, Testing, and Community

● Future Plans
– DAMON/DAMOS Extension and Improvements

– DAMON Auto-tuning and Modules Unification

– Misc Kernel-side TODOs

– More User-space Components and Testing

● Conclusion

DAMOS: Motivation
● Now DAMON-based optimizations are available (by both kernel and user)

– Common steps for the optimizations would be…

– Run DAMON, get/analyze monitoring results, and make some memory
management decisions (e.g., reclaim cold pages, use THP for hot pages, …)

● Not so ideal because
– Steps could be repetitive

– User-space approach could be inefficient due to kernel-user context switches
● BPF-like approaches would be available, though

● Couldn’t we offload the works to DAMON in the kernel?
– Don’t repeat yourself

– Use the information directly from where it generated

DAMOS: DAMON-based Operation Schemes
● A core feature of DAMON for reducing the repetitive works

● Receives ‘schemes’; each scheme is constructed with
– Target access pattern

● Ranges of size, access frequency, and age of memory regions

– Memory management action, e.g., PAGEOUT, HUGEPAGE, ...

● DAMOS automatically finds the memory region of the target pattern
using DAMON and applies the action to the region

● Now users can make DAMON-based optimizations with no-code

format is:
<min/max size> <min/max frequency (0-100)> <min/max age> <action>
#
if a region of size >=4KB didn’t accessed for >=2mins, page out
4K max 0 0 2m max pageout

DAMOS: Evaluation
● Implemented main ideas of two state-of-the-arts works with DAMOS

– Access-aware THP collapse/split
● The original work was accepted to a top-tier conf (OSDI’16)
● Re-implemented with two lines of DAMOS config
● Our version removes 76.15% of THP memory bloats

while preserving 51.25% of THP speedup

– Proactive reclamation
● The original work was accepted to another top-tier conf (ASPLOS’19) and

being used for Google fleets
● Re-implemented with one line of DAMOS config
● reduces 93.38% of residential sets and 23.63% of system memory footprint

while incurring only 1.22% runtime overhead in the best case.

– For more details, please read the report

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://dl.acm.org/doi/10.1145/3297858.3304053
https://damonitor.github.io/doc/html/latest/vm/damon/eval.html

DAMOS: More Features For Production
● For productions that safety-critical, DAMOS provides additional features

● Time/space quota per a given time interval
– DAMOS try to use CPU time no more than the given time quota

– DAMOS try to apply the action to memory no more than the space quota

● Regions prioritization
– Under the quota, DAMOS applies the action to prioritized regions first

– Prioritization logic can be customized for different DAMOS actions
● In case of RECLAIM, older and colder pages are prioritized by default

● Three watermarks (high, mid, low) with user-specified metric (e.g., freemem)
– Deactivate if the metric > high_watermark or metric < low_watermark

– Activate if the metric < mid_watermark and metric > low_watermark

– Avoid DAMOS using any resource under a peaceful or a catastrophic situation

● With online tuning, these opens some interesting capabilities

DAMOS: History and Status
● 2020-02: RFC v1 posted

● 2021-05: Merged in Amazon Linux 2 >=5.4 Kernels

● 2021-11: Merged in v5.16-rc1

● 2022-04: Enabled in Android GKI

https://android.googlesource.com/kernel/common/+/0496c13ded02bd72426d189b777bf303fe490f62

Overview
● Current Status

– DAMON

– DAMOS

– DAMON Modules

– User-space, Testing, and Community

● Future Plans
– DAMON/DAMOS Extension and Improvements

– DAMON Auto-tuning and Modules Unification

– Misc Kernel-side TODOs

– More User-space Components and Testing

● Conclusion

DAMON Modules: Motivation
● A common question: Policy in user-space or kernel-space?

– Only user-space policies could make ultimate result
● True for some cases, might not be true for some other cases
● Requires non-trivial user-space efforts investment, though

– Kernel-space policies could be worthy to try
● Useful for someone who cannot get help from the user-space ultimate policy
● Kernel just works at least reasonably

● DAMON aims to convince both; It hence provides
– Highly tunable and flexible user interface via sysfs, and

– DAMOS application static kernel modules for general use cases
● Supposed to be useful in general without complex tuning
● Can still be highly tuned via parameters, but the default values are supposed

to make no fantastic benefits but some, or at least no harm

DAMON_RECLAIM
● DAMON-based proactive reclamation kernel module

– Basically same to the previously shown DAMOS schemes

● Written using DAMOS’ simple kernel API
– Excepting the code for module parameters, only 188 lines of code

– SJ live-coded almost similar one in 10 minutes at ksummit’21

● Aims to be used on the production
– Ensure the safety using the quotas and watermarks

– The quotas and watermarks are conservatively tuned
● Aims to make no fantastic benefits but some with no harm
● Can be tweaked via module parameters

https://lpc.events/event/11/contributions/984/

DAMON_LRU_SORT
● Yet another DAMON module

● Sorts pages in LRU lists for better performance
– Can be used for proactive reclamation improper situations

● E.g., Having slow or restrictive storage devices

– `mark_page_accessed()` hot pages and `deactivate_page()` cold pages
● We could do more fine-grained LRU lists-adjustment in a future

● Reduces 10-20% memory pressure stall time (memory PSI, some)
under artificial memory pressure

DAMON Modules: History and Status
● 2021-06: DAMON_RECLAIM RFC v1 posted

● 2021-10: DAMON_RECLAIM merged in Amazon Linux 2 >=5.10
kernel

● 2022-01: DAMON_RECLAIM merged in v5.16-rc1

● 2022-04: DAMON_RECLAIM Enabled in Android GKI

● 2022-05: DAMON_LRU_SORT RFC v1 posted

● 2022-08: DAMON_LRU_SORT merged in v6.0-rc1

https://android.googlesource.com/kernel/common/+/0496c13ded02bd72426d189b777bf303fe490f62

Overview
● Current Status

– DAMON

– DAMOS

– DAMON Modules

– User-space, Testing, and Community

● Future Plans
– DAMON/DAMOS Extension and Improvements

– DAMON Auto-tuning and Modules Unification

– Misc Kernel-side TODOs

– More User-space Components and Testing

● Conclusion

DAMON User-space Applications
● DAMON provides two user interfaces based on debugfs and sysfs

– Those are for user space tools implementation, not for manual use

– The debugfs interface will be deprecated after next LTS is released

● SJ develops and maintains his own user space tool
– Available at Github (https://github.com/awslab/damo) and PyPI (

https://pypi.org/project/damo/)

– Provides all DAMON features with human-friendly interface

● Alibaba developed their own DAMON user-space tool:
https://github.com/aliyun/data-profile-tools

https://docs.kernel.org/admin-guide/mm/damon/usage.html#debugfs-interface
https://docs.kernel.org/admin-guide/mm/damon/usage.html#sysfs-interface
https://github.com/awslab/damo
https://pypi.org/project/damo/
https://github.com/aliyun/data-profile-tools

Testing DAMON
● Maintains open source tests suite for DAMON:

https://github.com/awslabs/damon-tests
– Provides functionality tests and performance tests

● Functionality tests are based on selftests and kunit tests
● Performance tests use PARSEC3/SPLASH-2X workloads

– We run
● Functionality tests for every update of SJ’s hacking tree, >=v5.15.y, mm-

unstable, and the mainline
● Performance tests for latest SJ’s hacking tree every day

● Did some fuzzing tests
– Made DAMON debugfs interface syzkaller description and upstreamed

– No DAMON sysfs interface syzkaller description yet, though

https://github.com/awslabs/damon-tests
https://github.com/google/syzkaller/blob/master/sys/linux/damon.txt

DAMON Community
● DAMON is developed by its open and (hopefully) inclusive community

● Several people, institutes, and companies are participating

● Dedicated open mailing list: damon@lists.linux.dev

● Open, regular, and informal virtual bi-weekly meeting series
– https://lore.kernel.org/damon/20220810225102.124459-1-sj@kernel.org/

– We will have an in-person instance of it 17:00 today at Meeting Room 9

– Aims to be used for aligning participants’ conflicting goals and prioritizing
TODO items

mailto:damon@lists.linux.dev
https://lore.kernel.org/damon/20220810225102.124459-1-sj@kernel.org/

Overview
● Current Status

– DAMON

– DAMOS

– DAMON Modules

– User-space, Testing, and Community

● Future Plans
– DAMON/DAMOS Extension and Improvements

– DAMON Auto-tuning and Modules Unification

– Misc Kernel-side TODOs

– More User-space Components and Testing

● Conclusion

Extending DAMON
● Can easily extend for various address spaces and use cases

– Need to implement new monitoring operations set for the use case

● Currently, monitoring operations for virtual address spaces and the
physical address space are available

● Imaginable extensions include
– More efficient page-granularity system monitoring

● Current page-granularity monitoring is only for proof of concepts
● We already implemented an experimental version of this

– Monitoring operations using IBS or LRU-position

– Read-only, write-only, cgroups, for only specific file-backed memory, ...

https://lore.kernel.org/linux-mm/20201216094221.11898-14-sjpark@amazon.com/
https://developer.amd.com/wordpress/media/2012/10/AMD_IBS_paper_EN.pdf

Improving DAMON Accuracy/Overhead
● Adaptive monitoring attributes adjustment and regions splitting

– Find struggling regions and apply aggressive adaptation

– Page-gran monitoring will be re-implemented to be used for comparison

● Remapping regions based on monitoring results, to sorted by hotness
– The spatial locality assumption of memory regions will be more

reasonable

– DAMON-internal address space would be needed for usual cases

Hot Cool Warm Cold

Hot CoolWarm Cold

User-provided address space
(page-gran management)

DAMON address space
(DAMON region-based management)

User-provided address space
(page-gran management)

DAMON address space
(DAMON region-based management)

DAMOS Allow/Deny-list
● DAMON is simple

– No special care of anon, file-backed, cgroups, but only access pattern

● Users know some important memory areas that shouldn’t be
distracted by DAMOS
– Users could do `madvise()` or `mlock()` or somewhat

– DAMOS could have allow-list and deny-list for such regions
● E.g., “do the access-aware proactive reclamation for system memory but

these processes, these files, and these cgroups”

More DAMOS Actions and Modules
● DAMON might be able to be used to help

– Efficient but performant THP promotion/demotion

– Page migration target (for compaction or CMA) selection
● Cold pages might be not pinned

– Tiered-memory management

Overview
● Current Status

– DAMON

– DAMOS

– DAMON Modules

– User-space, Testing, and Community

● Future Plans
– DAMON/DAMOS Extension and Improvements

– DAMON Auto-tuning and Modules Unification

– Misc Kernel-side TODOs

– More User-space Components and Testing

● Conclusion

DAMON Modules Unification
● DAMON modules are exclusive at the moment

● Would be better to unify all the modules
– So that all modules can be enabled in one step: Just working kernel

● Say, CONFIG_ACCESS_AWARE_MM?

– But, should still be able to be used separately (no behavior/interface
change)

– Support of multiple DAMON contexts on single kdamond is required

DAMON Auto-tuning
● DAMON provides not small number of knobs, tuning is not so trivial

– Adding yet other more intuitive knobs for auto-tuning other knobs could help

– E.g., a monitoring time quota for `nr_{min,max}_regions` auto-tuning

● Transparent Memory Offloading (TMO) like Auto-tuning of
DAMON_RECLAIM would be possible and seems promising
– Monitor PSI and adjusts DAMOS quota

– Running (too-)simplified and aggressive TMO implementation with
DAMON_LRU_SORT reduces PSI 10-20%

● Might be able to be generalized for general DAMOS
– Already available via online tuning, but why not make kernel just work?

– Provides feedback interface, let users put metric like PSI that really matters to
them; DAMON does the auto-tuning based on the metric value

– Allow special keywords for kernel-better-collecting metrics like PSI

Overview
● Current Status

– DAMON

– DAMOS

– DAMON Modules

– User-space, Testing, and Community

● Future Plans
– DAMON/DAMOS Extension and Improvements

– DAMON Auto-tuning and Modules Unification

– Misc Kernel-side TODOs

– More User-space Components and Testing

● Conclusion

Misc Kernel-side TODO Items
● Non-root user DAMON interface

● DAMON running on no kdamond but a user-process

● Efficient DAMON monitoring results exposing

● Querying regions of specific access pattern

More User-space Components
● Out of SJ’s hand; waiting for user space experts’ contributions

● User-space library, say, libdamon
– While preparing for DAMON system call, let’s hide the gap

● Hand over of the official DAMON user-space tool
– SJ is bad at user space programming

– Alibaba’s datop might be the one candidate?

● More tools
– Showing access pattern with callstack will give us interesting profiling cap

– User-space optimizer/auto-tuner? RSS/WSS based OOM killer?

● More services
– DAMON/DAMOS as-a Service

● Working set size monitoring/alarming/auto scaling/...

More User-space Components: Imaginable Profiler
● Out of SJ’s hand; waiting for user space experts’ contributions

● User-space library, say, libdamon
– While preparing for DAMON system call, let’s hide the gap

● Hand over of the official DAMON user-space tool
– SJ is bad at user space programming

– Alibaba’s datop might be the one candidate?

● More tools
– Showing access pattern with callstack will give us interesting profiling cap

– User-space optimizer/auto-tuner? RSS/WSS based OOM killer?

● More services
– DAMON/DAMOS as-a Service

● Working set size monitoring/alarming/auto scaling/...

More User-space Components
● Out of SJ’s hand; waiting for user space experts’ contributions

● User-space library, say, libdamon
– While preparing for DAMON system call, let’s hide the gap

● Hand over of the official DAMON user-space tool
– SJ is bad at user space programming

– Alibaba’s datop might be the one candidate?

● More tools
– Showing access pattern with callstack will give us interesting profiling cap

– User-space optimizer/auto-tuner? RSS/WSS based OOM killer?

● More services
– DAMON/DAMOS as-a Service

● Working set size monitoring/alarming/auto scaling/...

Testing
● DAMON tests suite

– Use of more workloads

– More functionality tests case

– More unit tests

– Integrating in the kernel CI systems

● Fuzzing Support
– DAMON sysfs syzkaller description should be made

Summary
● Current Status

– In the kernel: DAMON, DAMOS, DAMON Modules

– In userspace: >=2 Tools

– In community: open and (hopefully) inclusive culture and chat series

● Future Plans
– Extended and improved DAMON/DAMOS/DAMON Modules

– Convenient and intuitive semi-auto tuning of DAMON/DAMOS

– Unified DAMON Modules: Access-aware LInuX Assistant

– More user-space libraries, tools, and services

– The community!

Questions?

https://kids.nationalgeographic.com/content/dam/kids/photos/animals/Birds/A-G/adelie-penguin-jumping-ocean.ngsversion.1396530997321.adapt.1900.1.jpg

● You can also use below
– Project page: https://damonitor.github.io
– Kernel docs for admin and programmers
– DAMON mailing list: damon@lists.linux.dev
– DAMON Beer/Coffee/Tea Chat
– The maintainer: sj@kernel.org

https://kids.nationalgeographic.com/content/dam/kids/photos/animals/Birds/A-G/adelie-penguin-jumping-ocean.ngsversion.1396530997321.adapt.1900.1.jpg
https://damonitor.github.io/
https://docs.kernel.org/admin-guide/mm/damon/index.html
https://docs.kernel.org/mm/damon/index.html
mailto:damon@lists.linux.dev
https://lore.kernel.org/damon/20220810225102.124459-1-sj@kernel.org/
mailto:sj@kernel.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

