
Checking your work: Linux kernel testing 
and CI

David Vernet
void@manifault.com

Linux Plumbers Conference 2022 – Dublin, Ireland

mailto:void@manifault.com


Agenda 01 kselftest background

02 What is the goal of kselftest?

03 Extending the test runner

04 kselftest in CI

05 Q & A



01 kselftest background

02 What is the goal of kselftest?

03 Extending the test runner

04 kselftest in CI

05 Q & A



What are kselftests?

- A flexible testing framework for validating the Linux kernel
- Testcases are instances of userspace programs

- Commonly written in C, but need only be an executable file
- Often output results in KTAP format

- Located in tree at tools/testing/selftests
- Many different subsystems tested, all (seemingly) slightly 

differently



A kselftest suite is defined by its Makefile



A kselftest suite is defined by its Makefile



A kselftest suite is defined by its Makefile



A kselftest suite is defined by its Makefile



kselftests framework is intentionally very flexible

- kselftests are only required to define a Makefile
- Otherwise, the suite can do anything

- E.g. define a single target which runs a shell script that loads a module that 
does heavy lifting (RCU)

- E.g. specify a few executable targets that function as testcases (livepatch)
- E.g. specify some targets that are compiled from .c files, and then run as 

testcases (cgroup)
- E.g. a combination of specifying testcases (TEST_GEN_PROGS, 

TEST_PROGS), and a single shell script that is responsible for invoking 
testcases.



kselftests can be built, installed, and run

- Details about this can be found on the kselftest kernel doc page
- https://docs.kernel.org/dev-tools/kselftest.html
- https://kselftest.wiki.kernel.org/

- Installing builds one or more specified test-suites, packages the output 
executables, and creates a “test runner” that can invoke the tests on your 
behalf

- make -C tools/testing/selftests TARGETS=”...” install

- Builds all test targets, and outputs them into a kselftest_install directory

- Creates a test runner that can be invoked to run all of the tests

https://docs.kernel.org/dev-tools/kselftest.html
https://kselftest.wiki.kernel.org/


















A kselftest suite can specify requisite kconfig 
options

- Test-suite advertising which Kconfig options it requires to run
- Not actually relevant to the building or packaging of kselftests

- Can run kselftests on a kernel that does not have Kconfig options
- Really just present by convention





01 kselftest background

02 What is the goal of kselftest?

03 Extending the test runner

04 kselftest in CI

05 Q & A

Note: Lots of discussion expected (and hoped for) during this section. 
Please feel free to interject.



kselftest was designed for ad-hoc usage



04 What can be improved?



04 What can be improved?



Since then, kselftests has some new features:
- Test suites can be packaged and installed
- Test runner can run test cases, parse KTAP output
- More built-in Make variables supported



But no common expectation for configuration
- config file is by convention, not used when packaging
- Test runner only runs executables and parses output, no build 

automation, VM spawning, etc
- Many test suites don’t use TEST_PROGS, TEST_GEN_PROGS



What’s the long-term roadmap for kselftest?
- New features being added to kselftest makes it more like a 

full-fledged testing framework
- At this point, seems to have two responsibilities:

1. House test-code that is specific to each subsystem, and structured 
to the liking of maintainers (original)

2. Provide a framework for defining, building, and running tests (new)



Assuming kselftest should evolve, what should it 
do?

- Should kselftest become a more fully-featured testing framework?
- Should it dictate more structure to test suites and test cases?
- Should the test runner do more for users?



01 kselftest background

02 What is the goal of kselftest?

03 Extending the test runner

04 kselftest in CI

05 Q & A



A single config file may not be enough
- Should we standardize how test suites structure themselves?

- Globally required configs
- Arch-specific configs
- Per-testcase configs?

- Some configurations are mutually exclusive
- E.g. CONFIG_ARM64 and CONFIG_X86_64

- Some features may only be available on certain architectures



Some test suites have already defined this for 
themselves

- BPF has a DENYLIST.s390x file which signals to CI which 
testcases aren’t supported on s390x

- Also has a global DENYLIST for signaling which testcases are 
broken and should be ignored





Running tests on a local build is challenging
Depending on the test-suite, requires a few steps (at least for me):

1. Compile kernel with the correct .config options, manually 
appended from a selftest suite

2. Boot into a VM, with a mounted volume shared from the host
3. Compile and install kselftests into that mounted volume
4. Run the installed kselftests runner from the VM



Should the runner handle some of these steps?
- Builds the kernel for one or more test-suites, assuming no conflicts
- Boot a VM with some # of cores, amount of RAM

- Will have to be configurable to accommodate tests that require specific I/O 
interface configurations, etc

- Run the tests in the VM
- Report results back to the user

- Or, is this something that should be handled at a higher level?



Some test suites already do this, e.g. RCU
- tools/testing/selftests/rcutorture/bin/kvm.sh

- Runs a VM with some specified # of CPUs, memory, initrd, etc
- tools/testing/selftests/rcutorture/bin/kvm-build.sh

- Builds a Linux kernel that can be booted into a VM for rcutorture tests
- Should this be a service provided by the core kselftest framework?



Kconfig is easy to mess up
- Some config options may conflict with what’s already present in 

.config. Kconfig may silently override and drop those options
- Can we add make targets that build the kernel for specific kselftest 

suites?
- Could be leveraged by CI jobs
- Can fail and/or warn if there are conflicting config options
- Can allow the user to specify specific architectures



01 kselftest background

02 What is the goal of kselftest?

03 Extending the test runner

04 kselftest in CI

05 Q & A



Pick your poison, there are a few options
● KernelCI (https://foundation.kernelci.org)
● Patchwork + github + extra magic 

(https://patchwork.kernel.org/project/netdevbpf/list/)

03 How kernel tests are run

https://foundation.kernelci.org
https://patchwork.kernel.org/project/netdevbpf/list/




KernelCI – A Linux Foundation project

Open source test automation system

 

Builds and runs kernels across a variety of trees, branches, toolchains, 
and configs

Also runs tests on different architectures and SoCs

03 How kernel tests are run



https://linux.kernelci.org/jo
b/



https://linux.kernelci.org/jo
b/



https://linux.kernelci.org/jo
b/



https://linux.kernelci.org/jo
b/



https://linux.kernelci.org/jo
b/



https://linux.kernelci.org/jo
b/



https://linux.kernelci.org/jo
b/



https://linux.kernelci.org/jo
b/



https://linux.kernelci.org/jo
b/





https://linux.kernelci.org/build/



https://linux.kernelci.org/build/



https://linux.kernelci.org/build/id/6295acad348c04ad65a39bdd/



Kernel module build logs



https://linux.kernelci.org/tests/



https://linux.kernelci.org/soc
/



Pros

- Builds for multiple architectures
- Tests on multiple architectures
- Builds with multiple toolchains
- Useful information provided with 

failures and known regressions
- Open source and part of the Linux 

Foundation
- Emails failures to upstream lists
- Bisects to find culprit patches

KernelCI – Pros and Cons

Cons

- Only runs on merged patches
- …but new APIs are coming to allow 

developers to address this
- Web dashboard needs some 

redesign, still has some bugs



https://patchwork.kernel.or
g



Patchwork + github – How BPF runs CI tests

Patchwork is a free, web-based patch tracking system

 

Architecture is a combination of patchwork, github, Meta infrastructure

Runs all BPF seltests (https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf) on every 
patch sent to bpf and bpf-next lists

Only builds and tests for x86 and s390x architectures

03 How kernel tests are run

https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf


https://patchwork.kernel.org/project/netdevbpf/list/



Components

Patchwork Kernel Patches Daemon kernel_patches/bpf 
GitHub repo

GitHub action runners (x86, s390x)

kernel_patches/vm_test

Slide copied almost verbatim from BPF CI talk by Mykola Lysenko at LSFMM 2022 
(https://docs.google.com/presentation/d/1RQZjLkbXmSFOr_4Sj5BdQsXbUh_vMshXi7w09pUpWsY/edit#slide=id.g127798017a6_0_194) 

https://docs.google.com/presentation/d/1RQZjLkbXmSFOr_4Sj5BdQsXbUh_vMshXi7w09pUpWsY/edit#slide=id.g127798017a6_0_194


https://patchwork.kernel.org/project/netdevbpf/list/



https://patchwork.kernel.org/project/netdevbpf/list/









Pros

- Patchwork is used by maintainers 
(one stop shops can be nice)

- Runs on every patch sent to BPF 
lists

- Runs on at least 2 architectures, 
could theoretically add more

- BPF tests in general are easy to run 
locally – can use script to run in VM

- New BPF tests automatically run

Patchwork

Cons

- Other patchwork suites need their 
own daemon, etc infra to run CI

- Doesn’t send messages to BPF lists 
for job failures

- Uses Meta / private infrastructure 
for Kernel Patches daemon

- Doesn’t run tests on SoCs or 
directly on various non-x86 
hardware (uses QEMU for s390x)



01 kselftest background

02 kselftest in CI

03 What is the goal of kselftest?

04 Extending the test runner

05 Q & A





Bonus: Other CI options





LKP – Linux Kernel Performance / 0 day

Run by the 0-day team at Intel

 

Builds and runs kernels across a variety of trees, branches, toolchains, and configs, including unmerged patches

Runs build tests, benchmarks, and logical tests (defined out of tree in separate github repo)

Only builds and tests on and for x86 (though apparently they also build for other architectures on private jobs / 
branches?)

03 How kernel tests are run



https://www.intel.com/content/www/us/en/developer/topic-te
chnology/open/linux-kernel-performance/overview.html



https://www.intel.com/content/www/us/en/developer/topic-te
chnology/open/linux-kernel-performance/overview.html



https://lists.01.org/hyperkitty/



https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.or
g/







Pros

- Builds on patches that have not yet 
been merged

- Provides strong signal by sending 
messages to upstream lists

- Runs benchmarks
- Does bisection to find initial broken 

commit

LKP / 0 Day – Pros and Cons

Cons
- Only runs builds and tests for x86 

(or not?)
- Does not build with multiple 

toolchains
- Error information helpful, but less 

comprehensive than KernelCI
- Uses Intel / private infrastructure 

(and source?)





syzkaller + syzbot – Fuzzing the kernel

Continuously fuzzes main Linux kernel branches

Reports found bugs to upstream lists

Bisects to find bugs (and fixes) on specific patches

Runs on multiple architectures

03 How kernel tests are run



https://syzkaller.appspot.com/upstream



https://syzkaller.appspot.com/upstream



https://syzkaller.appspot.com/upstream



https://lore.kernel.org/lkml/000000000000f537cc05ddef88db@google.com
/T/



Pros

- Great coverage thanks to the nature 
of fuzzing + sanitizers

- Bisects to find culprit patch, and the 
patch that fixes an issue

- Runs on multiple architectures (in 
VMs)

- Sends messages to upstream on 
failures

syzbot

Cons

- Doesn’t run on unmerged patches
- Doesn’t run selftests / kunit tests
- Runs on proprietary Google infra
- Configurations are hard-coded per 

platform in the syzbot repo



Independently managed solutions (e.g. for btrfs)



http://toxicpanda.com



http://toxicpanda.com



http://toxicpanda.com/results/josefbacik/fedora-rawhide/btrfs_n
ormal_freespacetree/05-30-2022-21:06:02/index.html



http://toxicpanda.com/performance/



http://toxicpanda.com/perform
ance/smallfiles100k.html



Pros

- Tailored directly to the need of the 
subsystem

- Inspires test and benchmark writing

Independent solutions

Cons

- No cross architecture, cross-config, 
etc coverage provided by 
framework.

- Maintainers need to spend a lot of 
their time getting something like this 
set up


