
Live In a World With Multiple 
Memory Types

Huang, Ying



Updates In Last Year

Items Contributor Status

NUMA balancing based promotion – basic support Ying v5.18

NUMA balancing based promotion – hot page selection Ying mm-unstable

Explicit memory tiers Aneesh mm-unstable

Memory tiers user space interface Aneesh, Wei mm-unstable

Interleave among memory tiers Johannes WIP

Respect NUMA policy/cpuset in demotion Feng WIP

Partition a type of memory (DRAM) among cgroups Tim WIP



Initially…

• Initially, all memory are just simple DRAM

CPU DRAM



NUMA

• Then, we get remote DRAM

• We manage it with NUMA policy, cpuset, NUMA balancing, etc.

CPU DRAM

Node 0

Socket 0

CPU DRAM

Node 1

Socket 1



PMEM

• Then, we get PMEM

• We put them in separate NUMA nodes to use NUMA mechanism/API

CPU DRAM

Node 0

Node 2

Socket 0

PMEM

CPU DRAM

Node 1

Node 3
PMEM

Socket 1



MPOL_PREFERRED_MANY

• NUMA mechanism/API are extended

• E.g., prefer remote DRAM over local PMEM

CPU DRAM

Node 0

Node 2

Socket 0

PMEM

CPU DRAM

Node 1

Node 3
PMEM

Socket 1

Preferred



Page Placement Optimization

• Demote: per-node page reclaiming

• Promote: NUMA balancing

CPU DRAM

Node 0

Node 2

Socket 0

PMEM

CPU DRAM

Node 1

Node 3
PMEM

Socket 1

Demote Promote Demote Promote



Even More Memory Types

• Even More memory types are coming, HBM, and CXL memory devices, etc.

• How to manage them?

CPU DRAM

Node 0

Node 2

Socket 0

PMEM

HBM

CXL MEM

CPU DRAM

Node 1

Node 3
PMEM

HBM

CXL MEM

Socket 1

Node 4 Node 5

Node 6 Node 7



Memory Types

• Memory devices with same driver, link, media, etc.
• Same performance.

CPU DRAM

Node 0

Node 2

Socket 0

PMEM

HBM

CXL MEM

CPU DRAM

Node 1

Node 3
PMEM

HBM

CXL MEM

Socket 1

HBM
Node 5

Node 6 Node 7

Node 4

DRAM

PMEM

CXL MEM



Memory Types: Abstract 
Distance

• Distance from CPUs to a type of memory in the 
same socket
• Inspired by NUMA distance

• Orthogonal with NUMA topology

• Smaller is better

• Performance metric of a memory type
• Latency + bandwidth: how to combine?

• One possibility: latency under expected access 
throughput
• Workload dependent

La
te

n
cy

Throughput

Max
bandwidth



Memory Types: Sysfs Interface

• /sys/devices/virtual/memory_type/memory_typeN
• name: HBM, DRAM, PMEM, CXL MEM, etc.

• nodeX: symbol links to the NUMA nodes of the memory type

• default_abstract_distance: default provided by driver

• abstract_distance_offset: override by users
• Deal with firmware issue

• Reflect actual latency under expected access throughput

• latency, bandwidth?: performance metrics (ACPI HMAT, CXL CDAT)

• Subsystem?
• “system” is considered legacy now. What is the appropriate subsystem? 

virtual?



Memory Tiers

• Memory tier: memory types in a range of abstract distance

• Performance and policy

CPU DRAM

Node 0

Node 2

Socket 0

PMEM

HBM

CXL MEM

CPU DRAM

Node 1

Node 3
PMEM

HBM

CXL MEM

Socket 1

Node 4 Node 5

Node 6 Node 7

Tier 0

Tier 1

Tier 2

HBM

DRAM

PMEM

CXL MEM



Memory Tiers: Sysfs Interface

• /sys/devices/virtual/memory_tier
• memory_tierN

• nodes: list of nodes of the memory tier

• memory_typeM: symbol links to the memory types in the memory tier

• abstract_distance_start: start of abstract distance range

• abstract_distance_end: end of abstract distance range

• default_memory_tier: symbol link to memory tier of normal DRAM

• abstract_distance_chunk_size: customize abstract distance range
• Abstract distance chunks: [0, chunk_size); [chunk_size, 2*chunk_size); …

• Apply users' policy to group memory types
• Alternative method: customize the abstract distance of memory type



Memory Tiers: Sysfs Interface - 2

• Memory tier device ID
• 0, 1, 2, …

• Intuitive to understand

• ID may change with node online/offline

• abstract_distance_start / abstract_distance_chunk_size or 
abstract_distance_start
• ID may change with abstract distance ranges customization

• Memory tiers relationship via sorting IDs



Memory Tiers: From Fast to 
Slow

• Default memory allocation fallback order: from fast to slow

• Take full advantage of faster memory, hot pages are allocated first

CPU DRAM

Node 0

Node 2

Socket 0

PMEM

HBM

CXL MEM

CPU DRAM

Node 1

Node 3
PMEM

HBM

CXL MEM

Socket 1

Node 4 Node 5

Node 6 Node 7

Tier 0

Tier 1

Tier 2

Fallback 

order



Memory Tiers: Interleave

• Interleave among memory tiers: maximize memory throughput

• /sys/devices/virtual/memory_tier/memory_tierN/interleave_weight

CPU DRAM

Node 0

Node 2

Socket 0

PMEM

HBM

CXL MEM

CPU DRAM

Node 1

Node 3
PMEM

HBM

CXL MEM

Socket 1

Node 4 Node 5

Node 6 Node 7

Tier 0

Tier 1

Tier 2

100

70

35

Interleave 

weight



Memory Tiers: Page Placement 
Optimization

• Demotion was rebased on explicit memory tiers

• Promotion wasn't changed much

CPU DRAM

Node 0

Node 2

Socket 0

PMEM

HBM

CXL MEM

CPU DRAM

Node 1

Node 3
PMEM

HBM

CXL MEM

Socket 1

Node 4 Node 5

Node 6 Node 7

Tier 0

Tier 1

Tier 2

Demote Promote



Memory Tiers: Demotion and 
Explicit NUMA Policy

• NUMA policy/cpuset needs to be respected during demotion
• To avoid cross-socket memory accessing
• To implement placement control: e.g., run in normal DRAM

• Cpuset
• Cgroupv2: via unified hierarchy

• page -> memcg -> cgroup -> cpuset

• Cgroupv1?

• VMA NUMA policy: mbind()
• page -> rmap -> VMA -> policy

• Task NUMA policy: set_mempolicy()
• Not all information is available during demotion
• Best effort: page -> rmap -> VMA -> mm -> owner (task) -> policy



Memory Tiers: Performance 
Evaluation

• Hardware
• 2-socket server with DRAM + Optane DCPMM

• DRAM to PMEM ratio: 1:4

• Configurations
• Base: DRAM + PMEM with demotion/promotion disabled

• Optimized: DRAM + PMEM with demotion/promotion enabled

• DRAM: DRAM only, same total memory size as base/optimized



Memory Tiers: Performance 
Evaluation – Test Results

265.4

193.1

112.2 114.4 114.9

139.6

101.2 100

OPTIMIZED OPTIMIZED OPTIMIZED DRAM OPTIMIZED DRAM OPTIMIZED DRAM

PMBENCH FIO REDIS REDIS/HIGH LOAD MYSQL

• Score of base configuration: 100

• Micro-benchmarks show effectiveness of the optimization

• Redis results are good if load isn’t too high

• The bottleneck of MySQL is disk random sync write latency



TODOs

• Finish the memory tiers user space interface. More Review!

• Build memory types from various information (ACPI HMAT, SLIT, etc.)

• Unmapped file cache pages promotion

• Page demotion/promotion thrashing control solution

• Avoid to reclaim too many reclaimable/unmovable pages 
(inode/dentry cache, etc.) during demotion

• Promoting ahead of accessing

• Further improve the demotion/promotion algorithm



Thanks!


