
Make RCU do less (& later) !
Presenters:

Joel Fernandes (Google)
Uladzislau Rezki (Sony)
Rushikesh Kadam (Intel)

Intel power data courtesy: Sitanshu Nanavati.

Overview

● Discuss what RCU does at high-level (not how it works!).

● Discuss the 2 main issues we found:
○ On a mostly idle system, RCU activity can disturb the idleness.

■ RCU default config required to keep tick on when idle and CBs queued.

■ RCU constantly asked to queue callbacks on a lightly loaded system.

● Discuss possible solutions.

● Taking questions in the end as time permits (and then hallway)

What RCU does?

● RCU reader critical section protected by “read lock”

● RCU writer critical section protected by regular locks.

● Reader and writer execute concurrently.

● Writer creates copy of obj, writes to it and switches object pointer

to new one (release ordered write).

● Writer GCs old object after waiting (update)

What RCU does?
● That’s just one use case, there are many uses of RCU.

All use cases need same basic tools:

● Lock-less markers of a critical section (CS). Call it “reader”.

● Start waiting at some point in time (t = T0).

● Stop waiting after all readers that existed at T0 exited CS.

What RCU does?

● On a local CPU (running in kernel mode with CB queued).

Upper red arrows are timer tick checking are there
readers left? If not, report.

Lower red arrows are timer tick: have ALL CPUs
reported? If yes, invoke CB. If no, try again.

Queued a Callback (CB)

Time

What RCU does?
● On a local CPU (running in idle mode with CB queued).

Upper red arrows are timer tick checking are there
readers left? If not, report.
THESE NOT NEEDED - AS CPU CANNOT BE IN
RCU READER CRITICAL SECTION!

Lower red arrows are timer tick: have ALL CPUs
reported? If yes, invoke CB. If no, try again.
THESE STILL NEEDED - AS local CPU has queued CB.

Queued a Callback (CB)

Time

What RCU does?

● You see the problem?

○ RCU can block the timer tick from getting turned off!

○ Negates power-savings of CONFIG_NOHZ_IDLE

(To be fair to the main RCU maintainer, this issue is courtesy of the use case queuing a lot of

RCU Callbacks on otherwise idle CPUs, in the first place).

What RCU does?

● This happens even in user mode

● NOHZ_FULL systems typically turn tick off.

● RCU can keep it on (if CBs are queued on a ‘nohz full’ CPU)

Issue 1: RCU keeping the scheduler tick ON when idle.
● “Local Video Playback” use-case

has 2500+ wakes per second. A
large chunk of the wakes result
from constantly queued RCU
callbacks.

● RCU wakes are seen at HZ rate
(red boxes) between graphics
16.6ms activity (blue boxes)

● Blocks deeper Package C-states.
Impacts power

How bad are idle ticks for power

● We know idle ticks are bad for power, but
we did not know how bad!

● In Video playback, RCU wakes amount to
< 2% CPU load, but blocked deepest
package C-states (PC8) for 25+% of the
time, causing 10+% in SoC + memory
power.

● If you are profiling CPU load, then you will
likely miss the impact of wakes (use
powertop)

Same CPU utilization with and without ticks!

With ticks off

+ With ticks off

Why idle ticks are so bad for power

What are package C-states?

● Traditionally ACPI C-states were CPU
power states

● Idle governor picks C-states based on OS
next event prediction and C-states exit
latency & target residency

● CPU C-states have low exit latency &
target residency.

● 1000 HZ ticks do not block core C-states
much

● E.g. Sandy Bridge C-states table (2011)

static struct cpuidle_state snb_cstates[] __initdata = {
{

.name = "C1",

.exit_latency = 2,

.target_residency = 2,
{

.name = "C1E",

.exit_latency = 10,

.target_residency = 20,
{

.name = "C3",

.exit_latency = 80,

.target_residency = 211,
{

.name = "C6",

.exit_latency = 104,

.target_residency = 345,
{

.name = "C7",

.exit_latency = 109,

.target_residency = 345,
{

.enter = NULL }
};

Why idle ticks are so bad for power
What are package C-states?

SoC architecture provides opportunity to
extend the OS C-states hints to power
manage the entire SoC.

SoCs have power management unit (HW +
microcode), which coordinates CPU, IP blocks
and common logic, to put entire SoC in low
power mode.

Package C-states add extended C-states with
high exit latency & target residency.

1000 HZ ticks would impact deeper package
C-states,

E.g. AlderLake C-state table 2021

static struct cpuidle_state adl_cstates[] __initdata = {
{

.name = "C1",

.exit_latency = 1,

.target_residency = 1,
{

.name = "C1E",

.exit_latency = 2,

.target_residency = 4,
{

.name = "C6",

.exit_latency = 220,

.target_residency = 600,
{

.name = "C8",

.exit_latency = 280,

.target_residency = 800,
{

.name = "C10",

.exit_latency = 680,

.target_residency = 2000,
{

.enter = NULL }
};

New
Extended
C-states

Why was RCU keeping the tick on?

This is required in default RCU configurations as CBs are invoked on
same CPU they were queued on, in a softirq.

Advantages:

● Timely detection of GP end and thus execution of queued CBs.
● Executing CBs on queuing CPU eliminates need for CB list locking.
● No need for additional thread wake ups as local softirq execs CB.
● Cache-line is likely hot from queuing and CB would not incur misses.

These can be especially useful on busy systems and large #CPU server!

Issue 1: RCU keeping the scheduler tick ON when idle.

Possible solution: Using CONFIG_FAST_NOHZ option

● CPUs enter the dyntick-idle state (the state where the tick is turned off)
even if they have CBs queued.

● Idle CPUs with callbacks check RCU state every 4 jiffies.
○ 4 jiffies for non-kfree CBs.
○ 6 jiffies or so for kfree CBs.

Solution for newer kernels: CONFIG_RCU_NOCB_CPU (Execute RCU CBs in per-cpu threads.)

Issue 1: RCU keeping the scheduler tick ON when idle.

CPU 0 CPU 1
Queue CB

Idle + tick-off

Time

Invoke CB

Solution for newer kernels: CONFIG_RCU_NOCB_CPU

Issue 1: RCU keeping the scheduler tick ON when idle.

CPU 0 CPU 1
Queue CB

Idle + tick-off

Time

Invoke CB

 CB list Locking

Can cause performance overhead on system with frequent CB
queue/exec!

Solution for newer kernels: CONFIG_RCU_NOCB_CPU

However, can be great for power and CPU isolation…

● Scheduler may move threads to non-idle CPUs thus leaving more idle.

● Both starting of new grace periods, and executing CBs are moved out of the

softirq context and into threads.

Issue 1: RCU keeping the scheduler tick ON when idle.

● RCU callback offload unblocks
dynticks-idle and hence
reduces timer wakes.

● RCU callback offload does
increase the scheduler wakes
marginally, but reduces total
platform wakes.

● Improves Package C-states
residency and hence SoC +
Memory power.

CONFIG_RCU_NOCB_CPU saves lots of power

Use-case: Local video playback via
Chrome browser, VP9 1080p @ 30
fps content

Device: Chrome reference device,
AlderLake Hybrid CPU with 2
Cores (with Hyperthreading) + 8
Atoms

New option: CONFIG_RCU_NOCB_CPU_ALL

● If you enable CONFIG_RCU_NOCB_CPU, you still need to
specify rcu_nocbs=0-N to make it work.

So…

● New option CONFIG_RCU_NOCB_CPU_ALL was added to just
enable nocb for all CPUs by default.

Can we do even better?

Observations:

● When a system is mostly idle, most CBs don’t need to execute right
away, some can be delayed as long as needed!

● Some CBs in the system “trickle” frequently.

● Some CBs in the system “trickle” frequently.

● Several callbacks constantly queued.

Observation: ChromeOS when idle

rcutop refreshing every 5 seconds. ChromeOS logged
in with screen off. Device on battery power.

Observation:
ChromeOS
Display pipeline
Display pipeline in
ChromeOS constantly
opens/close graphics
buffers.

VizCompositorTh-1999 [006] 1472.325451: sys_enter_close: fd: 0x00000033
VizCompositorTh-1999 [006] 1472.325457: sys_enter_close: fd: 0x00000046
ThreadPoolSingl-6857 [010] 1472.325734: sys_enter_close: fd: 0x00000025
ThreadPoolSingl-6857 [010] 1472.325743: rcu_callback: rcu_preempt rhp=0xffff9f3edc718480 func=file_free_rcu 1
 chrome-1975 [000] 1472.344365: sys_enter_close: fd: 0x0000002d
 DrmThread-1993 [002] 1472.344627: sys_enter_close: fd: 0x00000044
 DrmThread-1993 [002] 1472.344844: sys_enter_close: fd: 0x00000044
 chrome-1975 [000] 1472.345019: sys_enter_close: fd: 0x00000046
VizCompositorTh-1999 [006] 1472.345071: sys_enter_close: fd: 0x00000046
VizCompositorTh-1999 [006] 1472.345088: sys_enter_close: fd: 0x00000044

kworker/10:2-2105 [010] 1472.346603: rcu_callback: rcu_preempt rhp=0xffff9f41efa9f600 func=rcu_work_rcufn 1
 kworker/9:4-3546 [009] 1472.346603: rcu_callback: rcu_preempt rhp=0xffff9f41efa5f600 func=rcu_work_rcufn 1
 kworker/0:4-3506 [000] 1472.346606: rcu_callback: rcu_preempt rhp=0xffff9f41ef81f600 func=rcu_work_rcufn 1
 DrmThread-1993 [002] 1472.357990: sys_enter_close: fd: 0x0000002e
 DrmThread-1993 [002] 1472.358005: rcu_callback: rcu_preempt rhp=0xffff9f3eb9328000 func=file_free_rcu 1
 chrome-1975 [000] 1472.358200: sys_enter_close: fd: 0x00000038
VizCompositorTh-1999 [006] 1472.358367: sys_enter_close: fd: 0x0000002e
 chrome-1975 [000] 1472.358539: sys_enter_close: fd: 0x00000044
 chrome-1975 [000] 1472.358546: sys_enter_close: fd: 0x0000002e
 chrome-1975 [000] 1472.358548: sys_enter_close: fd: 0x00000038
VizCompositorTh-1999 [006] 1472.358778: sys_enter_close: fd: 0x0000002e
VizCompositorTh-1999 [006] 1472.358784: sys_enter_close: fd: 0x00000046
ThreadPoolSingl-6857 [010] 1472.359008: sys_enter_close: fd: 0x00000025
ThreadPoolSingl-6857 [010] 1472.359019: rcu_callback: rcu_preempt rhp=0xffff9f3e8d28e300 func=file_free_rcu 1
 chrome-1975 [000] 1472.377594: sys_enter_close: fd: 0x0000002d
 DrmThread-1993 [002] 1472.377825: sys_enter_close: fd: 0x0000003f
 DrmThread-1993 [002] 1472.378043: sys_enter_close: fd: 0x0000003f
 chrome-1975 [000] 1472.378227: sys_enter_close: fd: 0x00000046
VizCompositorTh-1999 [006] 1472.378341: sys_enter_close: fd: 0x00000046
VizCompositorTh-1999 [006] 1472.378356: sys_enter_close: fd: 0x0000003f
 kworker/2:1-7250 [002] 1472.378524: rcu_callback: rcu_preempt rhp=0xffff9f41ef89f600 func=rcu_work_rcufn 1
 kworker/0:4-3506 [000] 1472.379626: rcu_callback: rcu_preempt rhp=0xffff9f41ef81f600 func=rcu_work_rcufn 1

kworker/10:2-2105 [010] 1472.380627: rcu_callback: rcu_preempt rhp=0xffff9f41efa9f600 func=rcu_work_rcufn 1
 DrmThread-1993 [002] 1472.391294: sys_enter_close: fd: 0x00000033
 DrmThread-1993 [002] 1472.391306: rcu_callback: rcu_preempt rhp=0xffff9f3eb9328600 func=file_free_rcu 1

Observation: Logging in Android (as example)

Android uses CONFIG_RCU_NO_CB by default to offload all CPUs.

Observation: Logging in Android (as example)
Example: Logging during static image (Android).

Static image is important use-case for power testing on Android. The system is
mostly idle to minimize a power drain of the platform:

● CPU stops refreshing panel and panel self-refreshes on it own.
● CPUs spend most of their time in deepest C-state
● SoC bandwidth is minimal (memory bus, CPU/cache frequencies, etc.).

Logging does constant file open/close giving RCU work when FDs get freed. As a
side effect of such periodic light load, many wakeups happen due to frequent
kicking an RCU-core for initializing a GP to invoke callbacks after it passes.

Below is a post process of scheduler ftrace for static image use-case during 30 seconds

(this is with CONFIG_RCU_NOCB_CPU with all CPUs offloaded).

<wake-up-trace-log>
 rcuop/2 pid: 33 woken-up 36709 interval: min 1320 max 71837 avg 9807
 rcuop/3 pid: 40 woken-up 36944 interval: min 1582 max 78649 avg 9744
 rcuop/0 pid: 15 woken-up 40570 interval: min 1520 max 80442 avg 8873
 rcuop/1 pid: 26 woken-up 40695 interval: min 1414 max 80043 avg 8846
 rcuog/0 pid: 14 woken-up 57907 interval: min 73 max 27855 avg 6217
 idd@1.0. pid: 1116 woken-up 89498 interval: min 231 max 17442186 avg 4005
 rcu_preempt pid: 13 woken-up 90203 interval: min 39 max 8505 avg 3991
 iddd pid: 1195 woken-up 250398 interval: min 92 max 16375 avg 1437
<wake-up-trace-log>

A trace was taken on the ARM big.LITTLE system. It is obvious that the biggest part belongs to
the “iddd logger” whereas a second place is fully owned by the RCU-core subsystem marked
as red.

Observation: Logging in Android (as example)

RCU mostly invokes callbacks related to the VFS, SELinux subsystems during logging:

● file_free_rcu()
● inode_free_by_rcu()
● i_callback()
● __d_free()
● avc_node_free()

Since system is lightly loaded and a number of posted callbacks to be invoked are rather

small, between 1-10, such pattern produce most of the wakeups (in static image use-case)

to offload a CPU with __only__ few callbacks there.

Observation: Logging in Android (as example)

Solution 4: Observation(cont.)
Observation: Logging in Android

Issue 2: RCU queuing CBs on lightly loaded system

Let us explore some solutions to this…

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Delay RCU processing using jiffies_till_{first,next}_fqs

● Great power savings

● Problem:
○ Causes slow down in ALL call_rcu() users globally whether they like it or not.

○ Causes slow down in synchronize_rcu() users globally.

○ Significantly regresses boot time.

jiffies_till_first_fqs &
jiffies_till_next_fqs

Baseline
(NOCB)

= 8, 8 = 16, 16 = 24, 24 = 32, 32

SoC+Memory, power savings w.r.t
Baseline

0% 2% 3% 3.4% 3.2%

Solution 1: Jiffies causes massive synchronize_rcu()
slowdown.

○ ChromeOS tab switching autotest

■ Due to synchronize_rcu() latency increases quickly from 23 ms to 169 ms

(with changing jiffies from 3 to 32)

○ The same evaluation with synchronize_rcu_expedited() gives us a latency of < 1

msec at jiffies = 32

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies increase causing function tracer issues

Several paths in ftrace code uses synchronize_rcu():

For but 2 examples:

● pid_write() triggered by write to

/sys/kernel/tracing/debug/tracing/set_ftrace_pid

● ring buffer code such as ring_buffer_resize()

End result is trace-cmd record -p function_graph can take several more seconds to start

and stop recording, than it would otherwise.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies causing boot-time issues (SELinux)

SELinux enforcing during ChromeOS boot up invokes synchronize_rcu()

[17.715904] => __wait_rcu_gp

[17.715904] => synchronize_rcu

[17.715904] => selinux_netcache_avc_callback

[17.715904] => avc_ss_reset

[17.715904] => sel_write_enforce

[17.715904] => vfs_write

[17.715904] => ksys_write

[17.715904] => do_syscall_64

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies causing per-cpu refcount regression

● RCU used to toggle atomic-mode and vice versa

● Can badly hurt paths that don’t really want to free memory but use call_rcu() for some other

purposes. Like suspend.

● call_rcu() slow down affects percpu refcounters

● These counters use RCU when switching to atomic-mode

○ __percpu_ref_switch_mode() -> percpu_ref_switch_to_atomic_sync().

● This call slows down for the per-cpu refcount users such as blk_pre_runtime_suspend().

This is why, we cannot assume call_rcu() users will mostly just want to free memory. There

could be cases just like this, and blanket slow down of call_rcu() might bite unexpectedly.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies with expedited option

● The previous synchronize_rcu() issues can be mitigated
by using expedited boot option which expedites while
ensuring good power efficiency.

● However, experiments showed that using expedited
RCU with jiffies, still causes a boot time regression.

● Also, the expedited option is expensive, and can affect
real-time workloads.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 2: Delay RCU CB processing (Lazy RCU)

● Delay Callback execution as long as possible.

● Introduce new API for lazy-RCU (call_rcu_lazy).

● Need to handle several side-effects:

○ RCU barrier.

○ CPU hotplug etc

○ Memory pressure

○ Offloading and De-offloading.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 2: Delay RCU CB processing (Lazy RCU)
Issue 2: RCU queuing CBs on lightly loaded system

Solution 2: Delay RCU CB processing (Lazy RCU)
Issue 2: RCU queuing CBs on lightly loaded system

DELAYED

CPU 0 CPU 1
Queue CB

Idle + tick-off

Time

Invoke CB

 CB list Locking

Can cause performance overhead on system with frequent CB
queue/invoke due to locking!

Lazy RCU: design approach

Issue 2: RCU queuing CBs on lightly loaded system

CPU 0 CPU 1
Queue CB

Time

Invoke CB

 CB list Locking

By-pass list is per-cpu and (almost) lock free!

Lazy RCU: design approach - re-use the bypass list.

Issue 2: RCU queuing CBs on lightly loaded system

Queue in
local list
(bypass)

Queue in
local list
(bypass)

Queue CB

CPU 0 CPU 1
Queue CB

Time

Invoke CB

 CB list Locking

Flush the bypass list if there is memory pressure, or lengthy timer expires!

Lazy RCU: design approach - re-use the bypass list.

Issue 2: RCU queuing CBs on lightly loaded system

Queue in
local list
(bypass)

Queue in
local list
(bypass)

Queue CB

Timer,
Mem Pressure,
Barrier

RCU lazy further reduces 300+ wakes
per seconds, and improves SoC
package C-states residency & Power

Solution 2: Delay RCU CB processing (Lazy RCU)
Issue 2: RCU queuing CBs on lightly loaded system

Use-case: Local video playback via
Chrome browser, VP9 1080p @ 30
fps content

Device: Chrome reference device,
AlderLake Hybrid CPU with 2
Cores (with Hyperthreading) + 8
Atoms

Solution 2: Delay RCU CB processing (Lazy RCU)
Latest Patches:

https://lore.kernel.org/all/20220819204857.3066329-1-joel@joelfernandes.org/

Summary:

● Introduce new API for lazy-RCU (call_rcu_lazy).
● Queue CBs into the Bypass list.
● Flush the Bypass list when:

○ Non-Lazy CBs show up.
○ Bypass list grows too big.
○ Memory is low.

● Several corner cases now handled (rcu_barrier, CPU hotplug etc).

Issue 2: RCU queuing CBs on lightly loaded system

https://lore.kernel.org/all/20220819204857.3066329-1-joel@joelfernandes.org/

Home screen swipe (as example)

Home screen swipe power(~3% delta)

● Some CBs in the system “trickle” frequently.

● Several callbacks constantly queued.

Observation: ChromeOS when idle

rcutop refreshing every 5 seconds. ChromeOS logged
in with screen off. Device on battery power.

Drawbacks and considerations
● Depends on user of call_rcu() using lazy

○ If a new user of call_rcu() shows up, it would go unnoticed and negate the benefits.
○ Updates to docs may help: https://docs.kernel.org/RCU/whatisRCU.html#id11

● Risk of user using call_rcu_lazy() accidentally when they should really use call_rcu(). For
example, a use case requiring synchronous wait.

● Risks on memory pressure:
○ Protection is enough on extreme condition?
○ Can test with more test cases such as ChromeOS memory pressure test.

Thanks!

● Paul McKenney (for putting up with us).
● Presenters.
● LPC sponsors and organizers.
● Frederic Weisbec for reviewing code.

Questions?

