
OS Scheduling with Nest: Keeping Tasks Close Together on
Warm Cores

Julia Lawall, Himadri Chhaya-Shailesh (Inria), Jean-Pierre Lozi (Oracle Labs),
Baptiste Lepers, Willy Zwaenepoel (University of Sydney), Gilles Muller (Inria)
September 12, 2022

1



Per-core task scheduling in Linux

The goal of a task scheduler:

• Place tasks on cores on fork, wakeup, or load balancing.
• Choose a task on the core to run when the core becomes idle.

The challenge:

• Task placement that synergizes with hardware features.

2



Per-core task scheduling in Linux

The goal of a task scheduler:

• Place tasks on cores on fork, wakeup, or load balancing.
• Choose a task on the core to run when the core becomes idle.

The challenge:

• Task placement that synergizes with hardware features.

2



A hardware feature: A core does one thing at a time

Work conservation: If a core is overloaded, no other core should be idle.

Studied in:

• The Linux scheduler: a decade of wasted cores.
EuroSys 2016.

• Provable multicore schedulers with Ipanema: application to work
conservation. EuroSys 2020.

3



Work conservation example

The machine
core 0 core 1 core 2 core 3
T1 T2

Where to put waking task T3?

• According to work conservation, core 1 or core 3 is a better choice.

4



Work conservation example

The machine
core 0 core 1 core 2 core 3
T1 T2

Where to put waking task T3?

• According to work conservation, core 1 or core 3 is a better choice.

4



Another hardware feature: Dynamic Voltage and Frequency Scaling

With DVFS, cores can run at different frequencies:

• Higher frequency −→
– faster execution
– more energy consuption
– more heat generation

• Lower frequency −→
– slower execution
– less energy consuption
– less heat generation.

Principles (Intel, AMD servers):

• More activity on a core results in a higher frequency
– Requests from the software (OS) and heuristics of the hardware.

• Turbo frequencies: Fewer used cores allows highest frequencies, due to
thermal constraints

5



Another hardware feature: Dynamic Voltage and Frequency Scaling

With DVFS, cores can run at different frequencies:

• Higher frequency −→
– faster execution
– more energy consuption
– more heat generation

• Lower frequency −→
– slower execution
– less energy consuption
– less heat generation.

Principles (Intel, AMD servers):

• More activity on a core results in a higher frequency
– Requests from the software (OS) and heuristics of the hardware.

• Turbo frequencies: Fewer used cores allows highest frequencies, due to
thermal constraints

5



Another hardware feature: Dynamic Voltage and Frequency Scaling

With DVFS, cores can run at different frequencies:

• Higher frequency −→
– faster execution
– more energy consuption
– more heat generation

• Lower frequency −→
– slower execution
– less energy consuption
– less heat generation.

Principles (Intel, AMD servers):

• More activity on a core results in a higher frequency
– Requests from the software (OS) and heuristics of the hardware.

• Turbo frequencies: Fewer used cores allows highest frequencies, due to
thermal constraints

5



What should be the impact of DVFS on scheduling?

recent core 0 core 1 core 2 core 3
recent

current T1 T2

Where to put waking task T3?

Core 1 could be a better choice:
Core 1 was recently active, so at a higher frequency.
Core 3 would suggest there are 4 active cores, giving a lower turbo frequency.

6



What should be the impact of DVFS on scheduling?

recent core 0 core 1 core 2 core 3
recent T1 T0 T2
current T1 T2

Where to put waking task T3?

• Core 1 could be a better choice:
– Core 1 was recently active, so at a higher frequency.
– Core 3 would suggest there are 4 active cores, giving a lower turbo frequency.

7



What should be the impact of DVFS on scheduling?

recent core 0 core 1 core 2 core 3
recent T1 T0 T2
current T1 T2

Where to put waking task T3?

• Core 1 could be a better choice:
– Core 1 was recently active, so at a higher frequency.
– Core 3 would suggest there are 4 active cores, giving a lower turbo frequency.

7



Nest scheduler

Goal: Task placement to exploit core frequencies.

• Reuse cores:
– Maintain a nest of recently used cores.

• Keep cores warm:
– Cores in the nest are likely to be reused,
so spin briefly when they go idle, to keep the frequency high.

8



Task placement with Linux v5.9’s CFS (configuration of LLVM)

0.0 0.1 0.2 0.3

time (seconds) 

24

26

28

30
c
o
r
e

(0.0,1.0] GHz (1.65%)

(1.0,1.6] GHz (3.26%)

(1.6,2.3] GHz (7.90%)

(2.3,3.6] GHz (62.27%)

(3.6,3.9] GHz (24.92%)

2-socket 64-core Intel 5218
16% speedup overall 9



Task placement with Linux v5.9’s CFS (configuration of LLVM), another perspective

Underload: In an interval, the number of cores used beyond the degree of
concurrency.

0.0 0.5 1.0 1.5 2.0

time

1

2

3

c
o
r
e Task 1

Task 2

Task 3

3 cores used, but only 2 needed =⇒ Underload of 1.

10



Task placement with Linux v5.9’s CFS (configuration of LLVM), another perspective

Underload: In an interval, the number of cores used beyond the degree of
concurrency.

0.0 0.1 0.2 0.3

0

2

4

6

u
n

d
e
r
lo

a
d

 (
4
m

s 
in

te
r
v
a
l)

2-socket 64-core Intel 5218
16% speedup overall 11



Task placement with Nest (configuration of LLVM)

0.0 0.1 0.2 0.3

time (seconds) 

61

62

c
o
r
e

(0.0,1.0] GHz (1.50%)

(1.0,1.6] GHz (0.00%)

(1.6,2.3] GHz (0.00%)

(2.3,3.6] GHz (7.52%)

(3.6,3.9] GHz (90.98%)

2-socket 64-core Intel 5218
16% speedup overall 12



Underload: Nest vs CFS

0.0 0.1 0.2 0.3

0

2

4

6

u
n

d
e
r
lo

a
d CFS 

schedutil

Nest 

schedutil

2-socket 64-core Intel 5218
16% speedup overall 13



Nest details: Reuse cores

Primary nest:
• Cores that are currently/recently used, and
• Expected to be useful in the near future.

Reserve nest:
Cores that were previously in the primary
nest, but not used in a while, or
Selected recently by CFS, but not yet deemed
necessary in the primary nest.

The nests grow (and shrink, for the primary nest)
automatically.

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

14



Nest details: Reuse cores

Primary nest:
• Cores that are currently/recently used, and
• Expected to be useful in the near future.

Reserve nest:
• Cores that were previously in the primary
nest, but not used in a while, or

• Selected recently by CFS, but not yet deemed
necessary in the primary nest.

The nests grow (and shrink, for the primary nest)
automatically.

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

15



Nest details: Reuse cores

Primary nest:
• Cores that are currently/recently used, and
• Expected to be useful in the near future.

Reserve nest:
• Cores that were previously in the primary
nest, but not used in a while, or

• Selected recently by CFS, but not yet deemed
necessary in the primary nest.

The nests grow (and shrink, for the primary nest)
automatically.

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

16



Nest details: Core selection example

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Task fork/wakeup: Task T80.

• Look for an idle core in the primary nest: ×
– Start at the parent/previous core to
avoid collisions.

Look for an idle core in the reserve nest: ×
Always start at the same core, to
avoid task dispersal.

In both cases, look in the parent/previous
socket first, to improve locality.

Finally, fall back to core picked by CFS; add it
to the reserve nest, useful for transient tasks.

17



Nest details: Core selection example

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Task fork/wakeup: Task T80.
• Look for an idle core in the primary nest: ×

– Start at the parent/previous core to
avoid collisions.

Look for an idle core in the reserve nest: ×
Always start at the same core, to
avoid task dispersal.

In both cases, look in the parent/previous
socket first, to improve locality.

Finally, fall back to core picked by CFS; add it
to the reserve nest, useful for transient tasks.

17



Nest details: Core selection example

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Task fork/wakeup: Task T80.
• Look for an idle core in the primary nest: ×

– Start at the parent/previous core to
avoid collisions.

Look for an idle core in the reserve nest: ×
Always start at the same core, to
avoid task dispersal.

In both cases, look in the parent/previous
socket first, to improve locality.

Finally, fall back to core picked by CFS; add it
to the reserve nest, useful for transient tasks.

18



Nest details: Core selection example

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Task fork/wakeup: Task T80.
• Look for an idle core in the primary nest: ×

– Start at the parent/previous core to
avoid collisions.

• Look for an idle core in the reserve nest: ×
– Always start at the same core, to
avoid task dispersal.

In both cases, look in the parent/previous
socket first, to improve locality.

Finally, fall back to core picked by CFS; add it
to the reserve nest, useful for transient tasks.

19



Nest details: Core selection example

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Task fork/wakeup: Task T80.
• Look for an idle core in the primary nest: ×

– Start at the parent/previous core to
avoid collisions.

• Look for an idle core in the reserve nest: ×
– Always start at the same core, to
avoid task dispersal.

In both cases, look in the parent/previous
socket first, to improve locality.

Finally, fall back to core picked by CFS; add it
to the reserve nest, useful for transient tasks.

20



Nest details: Core selection example

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Task fork/wakeup: Task T80.
• Look for an idle core in the primary nest: ×

– Start at the parent/previous core to
avoid collisions.

• Look for an idle core in the reserve nest: ×
– Always start at the same core, to
avoid task dispersal.

• In both cases, look in the parent/previous
socket first, to improve locality.

Finally, fall back to core picked by CFS; add it
to the reserve nest, useful for transient tasks.

21



Nest details: Core selection example

t1 T6 T8 T23 T80 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Task fork/wakeup: Task T80.
• Look for an idle core in the primary nest: ×

– Start at the parent/previous core to
avoid collisions.

• Look for an idle core in the reserve nest: ×
– Always start at the same core, to
avoid task dispersal.

• In both cases, look in the parent/previous
socket first, to improve locality.

• Finally, fall back to core picked by CFS; add it
to the reserve nest, useful for transient tasks.

22



Nest details: nest management

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Another task fork/wakeup:

• Look for an idle core in the primary nest: ×
Look for an idle core in the reserve nest:
The core enters the primary nest.

23



Nest details: nest management

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Another task fork/wakeup:
• Look for an idle core in the primary nest:

×
Look for an idle core in the reserve nest:
The core enters the primary nest.

23



Nest details: nest management

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Another task fork/wakeup:
• Look for an idle core in the primary nest: ×
Look for an idle core in the reserve nest:
The core enters the primary nest.

23



Nest details: nest management

t1 T6 T8 T23 T80 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Another task fork/wakeup:
• Look for an idle core in the primary nest: ×
• Look for an idle core in the reserve nest:

✓
The core enters the primary nest.

24



Nest details: nest management

t1 T6 T8 T23 T80 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Another task fork/wakeup:
• Look for an idle core in the primary nest: ×
• Look for an idle core in the reserve nest: ✓
The core enters the primary nest.

24



Nest details: nest management

t1 T6 T8 T23 T80 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Another task fork/wakeup:
• Look for an idle core in the primary nest: ×
• Look for an idle core in the reserve nest: ✓
• The core enters the primary nest.

25



Nest details: nest management

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Idle core in the primary nest:
Moved back to the reserve nest:

Instantly on termination.
After some time, after a block.

26



Nest details: nest management

t1 T6 T8 T23 t1 t1

t1 T4 T1 T12 T7 t1

t1 t1 T41 T2 T11 t1

t1 T18 T20 t1 t1 t1

primary nest
reserve nest

Idle core in the primary nest:
• Moved back to the reserve nest:

– Instantly on termination.
– After some time, after a block.

27



Nest details: Keep cores warm

When a Nest task leaves a core, spin for a couple ticks:

• Long enough to keep the frequency high for the next task.
• Not too long to interfere with the turbo frequency choice

28



Nest details: Other issues

Attached cores:

• Task becomes attached to a core where it has run more than once, and tries
to return there (previous-core history of depth 2)

• Mitigates the need to move in case of conflict with a kernel thread.

Impatient tasks:

• A thread that finds its previous core successively occupied falls back directly
to CFS, as the nests are considered to be too small.

29



Nest details: Other issues

Wakeup work conservation:

• Spreads tasks quickly across cores.
• Improves the accuracy of the nest size.

CAS to claim a core:

• Avoid collision on concurrent task placements.

30



Evaluation: Underload on software configuration

erl
an
g

ffm
pe
g gcc gd

b

im
ag
em
ag
ick lin

ux

llv
m_
nin
ja

llv
m_
un
ix

mp
lay
er

no
de
js

ph
p

0

2

4

av
er
ag
e
un
de
rlo
ad

pe
rs
ec
on
d

4-socket 128-core Intel 6130

CFS sched
CFS perf
Nest sched
Nest perf

Linux v5.90.0 0.1 0.2 0.3

time (seconds) 

24

26

28

30

c
o
r
e

vs.
0.0 0.1 0.2 0.3

time (seconds) 

61

62

c
o

r
e

31



Evaluation: Performance improvement on software configuration

erl
an
g

ffm
pe
g gcc gd

b

im
ag
em
ag
ick lin

ux

llv
m_
nin
ja

llv
m_
un
ix

mp
lay
er

no
de
js

ph
p

0%

20%

40%

14
.8
8s

±
1%

6.
02
s

±
1%

1.
48
s

±
0.
7%

1.
32
s

±
0.
8%

16
.9
9s

±
0.
6%

2.
66
s

±
0.
6%

11
.6
2s

±
1%

14
.4
8s

±
1%

11
.0
1s

±
0.
8%

1.
65
s

±
0.
9%

14
.9
5s

±
0.
7%

4-socket 128-core Intel 6130

CFS perf
Nest sched
Nest perf

Linux v5.9 32



Evaluation: Core frequencies on software configuration

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

CF
S
sc
he
d

CF
S
pe
rf

Ne
st
sc
he
d

Ne
st
pe
rf

0%

50%

100%

erlang ffmpeg gcc gdb
image
magick linux

llvm_
ninja

llvm_
unix mplayer nodejs php

1.1
7

1.1
8

1.0
7

1.0
3

1.0
2

1.0
2

1.2
1

1.2
0

1.0
5

1.1
4

1.1
4

1.0
7

1.1
3

1.1
3

1.0
6

1.0
9

1.0
9

1.0
4

1.1
5

1.1
6

1.0
6

1.1
5

1.1
5

1.0
5

1.1
5

1.1
5

1.0
6

1.1
7

1.1
8

1.0
8

1.0
7

1.0
8

1.0
4

4-socket 128-core Intel 6130

(0.0, 1.0] GHz (1.0, 1.6] GHz (1.6, 2.1] GHz
(2.1, 2.8] GHz (2.8, 3.1] GHz (3.1, 3.4] GHz
(3.4, 3.7] GHz

Linux v5.9 33



Evaluation: Energy consumption on software configuration (Linux v5.9)

erl
an
g

ffm
pe
g gcc gd

b

im
ag
em
ag
ick lin

ux

llv
m_
nin
ja

llv
m_
un
ix

mp
lay
er

no
de
js

ph
p

0%

20%

40% 32
72
J

±
1%

12
22
J

±
1.
0% 30
8J

±
1% 27
8J

±
1%

34
73
J

±
0.
8% 54
4J

±
1%

23
44
J

±
1%

29
07
J

±
1%

23
26
J

±
0.
5% 34
0J

±
0.
9%

30
65
J

±
0.
5%

4-socket 128-core Intel 6130 CFS perf Nest sched Nest perf

34



Evaluation: Performance improvement on the Phoronix multicore suite
(Linux v5.9)

Comparison to CFS schedutil:

slower by same faster by
CPU scheduler > 20% (5,20]% (5,20]% > 20%

4 socket CFS-perf. 2 (1%) 7 (3%) 190 (87%) 9 (4%) 10 (5%)
6130 NEST-sched. 1 (0%) 19 (9%) 159 (73%) 21 (10%) 18 (8%)

35



More recent Linux versions

Change in schedutil in Linux 5.11:

• Before 5.11:

intel_cpufreq_update_pstate(policy, target_pstate, true);

Suggests a frequency.

• Since 5.11:

intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate,
target_pstate, true);

Imposes a frequency.

36



Impact on Nest

Baseline: Linux 5.9, with CFS (Intel 5128).

0 20 40 60

h2 troll-1 5.9 performance, duration: 37.48 seconds

0

20

40

60

co
re

(0.0 1.0] GHz (0.16 = 0.24%)

(1.0 1.6] GHz (0.43 = 0.64%)

(1.6 2.3] GHz (0.55 = 0.82%)

(2.3 2.8] GHz (13.23 = 19.83%)

(2.8 3.1] GHz (16.30 = 24.44%)

(3.1 3.6] GHz (21.41 = 32.08%)

(3.6 3.9] GHz (14.64 = 21.94%)

0 20 40 60

h2 troll-1 5.9 schedutil, duration: 43.58 seconds

0

20

40

60

c
o
r
e

(0.0 1.0] GHz (3.12 = 4.21%)

(1.0 1.6] GHz (5.84 = 7.87%)

(1.6 2.3] GHz (7.19 = 9.69%)

(2.3 2.8] GHz (16.65 = 22.46%)

(2.8 3.1] GHz (13.71 = 18.50%)

(3.1 3.6] GHz (13.94 = 18.81%)

(3.6 3.9] GHz (13.68 = 18.45%)

Nest collects threads on cores,
but the frequency doesn’t rise with schedutil.

37



Impact on Nest

Nest based on Linux 5.9 (Intel 5128).

0 20 40 60

h2 troll-1 5.9Nest performance, duration: 36.95 seconds

0

20

40

60

co
re

(0.0 1.0] GHz (0.06 = 0.07%)

(1.0 1.6] GHz (0.13 = 0.15%)

(1.6 2.3] GHz (0.21 = 0.24%)

(2.3 2.8] GHz (14.85 = 17.00%)

(2.8 3.1] GHz (17.00 = 19.47%)

(3.1 3.6] GHz (37.12 = 42.50%)

(3.6 3.9] GHz (17.97 = 20.57%)

0 20 40 60

h2 troll-1 5.9Nest schedutil, duration: 35.71 seconds

0

20

40

60

c
o
r
e

(0.0 1.0] GHz (0.97 = 1.13%)

(1.0 1.6] GHz (2.18 = 2.53%)

(1.6 2.3] GHz (2.30 = 2.66%)

(2.3 2.8] GHz (13.88 = 16.07%)

(2.8 3.1] GHz (16.13 = 18.68%)

(3.1 3.6] GHz (35.57 = 41.19%)

(3.6 3.9] GHz (15.33 = 17.75%)

Nest collects threads on cores,
but the frequency doesn’t rise with schedutil.

38



Impact on Nest

Nest based on Linux 5.15 (Intel 5128).

0 20 40 60

h2 troll-1 5.15Nest performance, duration: 35.81 seconds

0

20

40

60

co
re

(0.0 1.0] GHz (0.07 = 0.08%)

(1.0 1.6] GHz (0.18 = 0.21%)

(1.6 2.3] GHz (0.34 = 0.39%)

(2.3 2.8] GHz (15.82 = 18.41%)

(2.8 3.1] GHz (16.35 = 19.03%)

(3.1 3.6] GHz (38.68 = 45.02%)

(3.6 3.9] GHz (14.49 = 16.86%)

0 20 40 60

h2 troll-1 5.15Nest schedutil, duration: 70.30 seconds

0

20

40

60

c
o

r
e

(0.0 1.0] GHz (114.21 = 66.85%)

(1.0 1.6] GHz (20.33 = 11.90%)

(1.6 2.3] GHz (7.20 = 4.21%)

(2.3 2.8] GHz (8.40 = 4.92%)

(2.8 3.1] GHz (5.89 = 3.45%)

(3.1 3.6] GHz (6.98 = 4.08%)

(3.6 3.9] GHz (7.84 = 4.59%)

Nest collects threads on cores,
but the frequency doesn’t rise with schedutil.

39



Conclusion

Nest task scheduler:

• Reuse cores.
– Fewer used cores and increased utilization, leading to higher frequencies.

• Keep cores warm.
– Maintain high frequencies over short idle periods.

Performance impact (Linux v5.9):

• +10%–2× performance on light or moderate loads, on 1, 2, and 4 socket Intel
servers (also an AMD desktop and an AMD server).

• Maintains performance for full loads and overloads
(NAS benchmarks, some Phoronixes).

• Impact depends on the power management of the OS and target hardware.

https://gitlab.inria.fr/nest-public/nest-artifact.git

40



Conclusion

Nest task scheduler:

• Reuse cores.
– Fewer used cores and increased utilization, leading to higher frequencies.

• Keep cores warm.
– Maintain high frequencies over short idle periods.

Performance impact (Linux v5.9):

• +10%–2× performance on light or moderate loads, on 1, 2, and 4 socket Intel
servers (also an AMD desktop and an AMD server).

• Maintains performance for full loads and overloads
(NAS benchmarks, some Phoronixes).

• Impact depends on the power management of the OS and target hardware.

https://gitlab.inria.fr/nest-public/nest-artifact.git

40



Conclusion

Nest task scheduler:

• Reuse cores.
– Fewer used cores and increased utilization, leading to higher frequencies.

• Keep cores warm.
– Maintain high frequencies over short idle periods.

Performance impact (Linux v5.9):

• +10%–2× performance on light or moderate loads, on 1, 2, and 4 socket Intel
servers (also an AMD desktop and an AMD server).

• Maintains performance for full loads and overloads
(NAS benchmarks, some Phoronixes).

• Impact depends on the power management of the OS and target hardware.

https://gitlab.inria.fr/nest-public/nest-artifact.git 40


