
Towards Secure Unified Kernel 
Images for Generic Linux 

Distributions and Everyone Else
🔐

Lennart Poettering, LPC 2022, Dublin



Status Quo Ante

● Kernel Image is signed, built by OS vendor
● Initial RAM disk (initrd) image is not signed (nor encrypted), generated locally
● Initrd generators are usually shell scripts that try to generate minimal images 

via parsing “ldd”, implementing a secondary, weaker form of packaging 
dependencies on individual file level

● Initrd mixes code and configuration
● Parameterization happens via kernel command line and by including 

configuration files in initrd image

(This is the status quo ante in pretty much all major, popular general purpose 
Linux distributions, commercial ones or otherwise)



Problems

The status quo ante has many major problems:

● No integrity of initrd image 🤯
● No confidentiality of parameters in initrd image 😭 
● Initrd mixes code and local configuration 🥹
● Fragile because of the way it is built (parsing of `ldd` output, usually) 🥺
● If included in TPM PCR measurements: non-deterministic values, that cannot 

be pre-calculated by vendors, and thus not signed (for use in signed PCR 
policies) 😔

● Untestable due to combinatorial explosion 😥
● Changing low-level OS configuration requires re-running of initrd generator 
😿



Benefits

The status quo ante also has various benefits:

● Very flexible, hackable and adjustable to local needs
● Typically, more minimal than package manager based approaches
● Already implemented, tested, and deployed



Goals

● Pre-built initrds that can be signed by vendor
● Secure parameterization of kernels/initrds (guaranteeing both integrity and 

confidentiality)
● Stable, deterministic TPM PCR measurements that can be pre-calculated
● Some degree of modularity
● Kernel/initrd updates as atomic single-file updates



Approach

1. Let’s pre-build basic initrds on OS vendors’ build systems
2. Let’s include them in a unified kernel image, and sign them along with it
3. Let’s introduce an extension concept, to maintain some modularity to cover 

for less common storage, networking subsystems (and similar) without having 
to pull support in the basic initrd.

4. Let’s add a credentials concept allowing secure local parameterization of 
unified kernel images

5. Let’s measure the unified kernel image components into PCR 11
6. Let’s include signed TPM2 policy for expected PCR 11 measurement value in 

kernel



Building basic initrd cpio

⏭ Next Talk, by Zbigniew



Unified Kernel Images

Combination of the following components in a single UEFI PE image:

● systemd-stub EFI stub
● ELF kernel image
● Basic initrd cpio
● kernel command line
● /etc/os-release
● (boot splash .BMP, if desired)
● (devicetree, if desired)
● Signed TPM2 policy information based on expected PCR measurements of 

the kernel



Unified Kernel Images

● All that, combined into one PE file through a simple “objcopy” invocation (see 
systemd-stub(7) man page for details)

● And then signed as one for SecureBoot
● Can be executed directly by UEFI firmware, since a PE binary like any other
● Can be automatically enumerated by systemd-boot boot loader, with the OS 

information automatically extracted from the PE image for display in the boot 
menu



systemd-stub PE UEFI stub

● Small piece of code that runs in UEFI mode. 
● Searches its own PE sections for the aforementioned components.
● Ultimately invokes the contained kernel + initrd + kernel command line
● May display a boot splash before
● Loads and activates Devicetree section
● Measures contained kernel + initrd into PCR 11 (which is otherwise unused; 

discussed later)
● Picks up credential files from ESP (discussed later)
● Picks up initrd extension images ESP (discussed later)
● Passes PCR signature from PE section as initrd to kernel (discussed later)



Extension Images

● Basic initrd included in unified kernel image – not extensible because pre-built by vendor.
● systemd-sysext → a tool implementing a “system extension” concept, that allows overlaying 

a cryptographically secured disk image onto /usr/
● systemd-sysext can work in host OS, but also in initrd
● System extension images are GPT disk images, implementing the Discoverable Partitions 

Specification with three relevant partitions: /usr/ file system (e.g. squashfs), partition with 
dm-verity data for that file system, partition with PKCS#7 signature of root hash of dm-verity 
data

● PKCS#7 signature is verified by kernel on mounting, with possible integration with IMA/IPE
● /usr/ tree in extension images is merged into initrd /usr/ via read-only overlayfs, should be 

purely “additive”, but this is not enforced



Extension Images (continued)

● Extension Images are supposed to add major subsystems at once (let’s say: 
a complete volume manager such as LVM, instead of an individual library), 
i.e. much larger granularity than packages

● Version handling is simple: each base initrd image declare an ID identifying 
the initrd/distribution project and a system extension API level. Extension 
images declare the same. Only if both match they can be activated.

● In UEFI mode systemd-stub searches for system extension image files in the 
directory the unified kernel PE image is invoked from. It loads them one by 
one into memory, generating an on-the-fly cpio initrd image from them, 
placing them in /.extra/sysext/

● systemd-sysext picks them up from there during early initialization of the basic 
initrd and activates them via dm-verity, overlayfs, …



Parameterization

1. In a SecureBoot environment, passing parameters to the kernel is problematic 
if done without authentication.

2. Kernel command line is locked down, and sourced only from unified kernel 
image section

3. Authenticating/decrypting in UEFI is nasty, since most likely requires 
embedding TPM2 and OpenSSL stack in UEFI code. We’d rather avoid that.



Credentials

Solution:

● systemd’s “service credentials” are a concept for passing identity information, 
certificates, key material, passwords, and similar to services

● They can also be passed into kernels (and then are called “system credentials”)
● Credentials can be encrypted and authenticated (AES256-GCM)
● Symmetric key derived from combination of local TPM (and possibly key stored in 

local file system /var/)
● In UEFI mode systemd-stub will look in the directory the unified kernel is invoked 

from for credentials, load them into memory and pass them as auto-generated initrd 
cpio to the ELF kernel, so that they’ll appear in /.extra/credentials/



Credentials (continued)

● System credentials loaded that way can be propagated down to individual 
services

● Credentials are understood by many systemd components
● Services will receive decrypted/authenticated credentials in simple regular 

files in the file system, all below a directory indicated via the 
$CREDENTIALS_DIRECTORY environment variable, private to the service

● Both encryption/signing and decryption/authentication happens in Linux 
userspace at the moment the credentials are consumed by a specific service, 
not earlier, in particular not in UEFI mode

● Suitable for security sensitive stuff, such as PEM secret keys, trusted 
certificate database information, passwords, and more



TPM2 PCR Measurements

● Now that kernel and initrd are pre-generated, they are also deterministic
● Hashes for them can be pre-calculated by vendors
● TPM2 PCRs hence too (if we start from a clean PCR)
● (Reminder: PCRs are special registers of the TPM that basically carry hashes 

of various components of the boot process, and that cannot be reset except 
via reboots)

● Resulting PCR values that can be pre-calculated can then also be signed by 
vendor

● Such a PCR signature can be used to build TPM security policies that allow 
locking secrets to kernels for which a suitable PCR signature can be 
presented.



TPM2 PCR Measurements (continued)

● systemd-stub will measure kernel + initrd into PCR 11
● PCR 11 is otherwise unused on Linux systems, hence initially all zeroes
● systemd-measure tool can pre-calculate expected values for PCR 11 from 

unified kernel components
● It can also sign the resulting expected PCR 11 values
● This PCR value signature can also be included in the PE unified kernel image 

like the other sections.
● systemd-stub looks for this PCR signature in the PE sections, and generates 

an on-the-fly cpio initrd archive from it and passes it to the kernel, so that it 
appears in /.extra/tpm2-pcr-signature.json



TPM2 PCR Measurements (continued)

● systemd-cryptsetup/systemd-cryptenroll look for this TPM2 PCR signature 
file, and if it exists automatically lock and unlock volumes with it.

● Similar, credentials encrypted/decrypted via the systemd-creds tool will also 
use this PCR signature information, to ensure encrypted credentials can only 
be unlocked if running on a kernel from the same vendor



Results

● Everything is authenticated: kernel, initrd, extension images, credentials 🌟
● Confidential data is encrypted: credentials ✨
● Disk and credential encryption policies can be bound to kernel vendor, 

installation and TPM hardware → permitting safe encryption for unattended 
systems; comprehensive offline security 💫

● Robust updates as kernel images are single-file updates in the ESP 🎉
● Modularity through system extensions 🥳
● Reasonable factory reset: remove credential files from ESP (and possibly 

extension files) and system is back in pristine state 🎊
● Sane remote attestation possible covering kernel, initrd, system extension 

images and credentials 🪅



Outlook

● Asymmetrically encrypted credentials
● Confidential Computing functionality



EOF


