
LoongArch: What we will do next

2

● Who we are
● What we’ve done
● What we’ll do next
● Q & A time

3

Who we are

● 陈华才 (CHEN Huacai) @chenhuacai
– arch/loongarch maintainer

● 王雪瑞 (WANG Xuerui) @xen0n
– Gentoo dev, arch/loongarch reviewer, among

countless other roles
– Proud to be that Hobbyist hanging around!

https://github.com/chenhuacai
https://github.com/xen0n

4

What is LoongArch?

● “a new RISC ISA, a bit like MIPS or RISC-V”
● Some numbers

– 3 ISA subsets (LA32{R,S} and LA64)
– 4 privilege levels (PLV0 ~ PLV3)
– 32 GPRs, 32 FPR/VRs, 8 FCCs

● Models
– Loongson 3A5000, 3C5000(L), 2K1000LA,

2K0500, etc.
● Further information

– Check out the official docs
– And don’t miss @xen0n's unofficial FAQ

https://loongson.github.io/LoongArch-Documentation/
https://blog.xen0n.name/en/posts/tinkering/loongarch-faq/

5

What we’ve done

● Overview of upstream status
● Current status of upstream kernel

6

Overview of upstream status

● Essential support mostly upstreamed
– Done: binutils, gcc, linux, glibc, go, libffi, libunwind, systemd, etc.
– Porting ongoing / pending reviews: LLVM, Rust, musl, libseccomp, etc.

● ELF psABI just got revised slightly incompatibly
● Overall ABI stable, multiple distros already available

– Gentoo
– Arch Linux (unofficial, two efforts) by @yetist and @shipujin
– Slackware (unofficial) by @shipujin
– CLFS (unofficial) by @sunhaiyong1978
– Actually I should be presenting on a LoongArch laptop right now!

https://wiki.gentoo.org/wiki/Project:LoongArch
https://github.com/loongarchlinux
https://github.com/shipujin/archlinux-loongarch64-bootstrap
https://github.com/yetist
https://github.com/shipujin
https://github.com/shipujin/slackware-loongarch64
https://github.com/shipujin
https://github.com/sunhaiyong1978/CLFS-for-LoongArch
https://github.com/sunhaiyong1978

7

Status of upstream kernel

● Supports UEFI+ACPI systems
● Timeline

– v5.19: Arch support & UAPI
– v6.0: irqchip, PCI & provisional ACPI definitions

● also vDSO getcpu etc.
– v6.1 should mostly work OOTB!

● Final ACPI definitions, proper EFI boot support, eBPF JIT,
qspinlock, perf events

– More to come: suspend/resume, LS7A sound, ...

8

What we’ll do next

● The “old world” problem
● Alternative boot protocols
● Way forward for EFI zboot flow

– Sorted out, kudos to @ardb!

https://github.com/ardbiesheuvel

9

The “old world” problem

● Background: “Tale of two worlds”
● Incompatibilities

– psABI
– Firmware & boot protocol
– Linux UAPI
– Userland (libc symbol versions etc.)

● Ways forward?

10

Tale of two worlds

● Earliest LoongArch ports were basically copy-paste of MIPS code
with mass-replaced strings
– Rushed for non-technical reasons
– Little gems like BogoLOONGARCH and LBT_LOONGARCH
– Obviously this is not going to fly…

● New ABI largely modeled after that of RISC-V
– ELF psABI and calling convention *mostly* unaffected

(fortunately)
– Other parts not so much; differences at every layer

11

Incompatibilities – psABI

● Relocation types
– Stack-machine relocs in OW modeled after rl78 and rx relocs
– Classic-style relocs in NW; transition largely complete

● ELF e_flags[7:6]
– 0x1 for objects produced with very recent NW toolchains, 0x0 for OW

● Implications
– Upstream LLVM/mold cannot understand stack relocs, and cannot be

taught to do so
– Multiple downstream projects need adaptation

12

Relocs: before vs after

13

Incompatibilities - Firmware
● UEFI tables

– Pointers in VA in old-world (“OW”)
● Possible rationale: it’s the same DMW

config as arch/loongarch expects
– PA in new-world (“NW”) as is the case with

everyone else
● ACPI tables

– Different and incompatible layouts
● Boot protocol

– struct bootparamsinterface (“BPI”)
● for OW & early iterations of NW kernel via

special GRUB
– EFI stub for NW

NW UEFI

BPI GRUB2 EFI stub

Linux

B
PI

stub D
T

O
W

U
EFI

N
W

U
EFI

NW GRUB2

N
W

U
EFI

EFI stub
stub
D

T

chainloading

OW UEFI

14

Incompatibilities - UAPI

● _NSIG
– 128 in OW (same as MIPS), 64 in NW

● Syscalls
– {get,set}rlimit → prlimit64
– fstat, newfstatat → statx

● ptrace, sigcontext differences

15

Incompatibilities - Userland

● libc symbol version
– GLIBC_2.27 in OW (you guessed that)
– GLIBC_2.36 in NW

● ld.so path
– /lib64/ld.so.1 in OW (ditto)
– /lib64/ld-linux-loongarch-lp64d.so.1 in NW

16

Uniting the two worlds?

● Goal: Digital preservation, possibly by allowing OW binaries on NW kernel
– Do we even want to go this way?
– Layered approach if we ever decide to try
– WINE-like approach otherwise for sanity

● Firmware Kernel: run ↔ NW kernel on either OW or NW firmware
– Means supporting BPI upstream
– Some early 3A5000 systems might never get updated FW; do we care?

● Kernel & userland ABI
– Separate chroot/sysroot likely needed for sanity, but UX might get hurt
– Handle the rest with userland shim / in-kernel?

17

How to do it if we try?
● Dividing line

– syscall boundary / in-kernel mechanism?
– How do we know if a process is speaking OW ABI?

By looking at e_flags, or implied _NSIG on 1st sigprocmask call?
– How to handle cross-world execs?

● Entrypoint
– Via binfmt_misc: how do we identify OW binaries?
– As ld.so replacement

● libc symbol versioning hacks – probably not upstreamable
● What about statically linked binaries?

● Shimming
– Marking of ABI flavor: ptrace / personality?

18

Alternative boot protocols

● Why other boot protocols matter
● Possibility: BPI compatibility
● Possibility: DT boot

19

Why other boot protocols matter?

● Old-world/BPI compatibility
– Some early hardware (esp. laptops) may never get NW firmware
– Users don’t want (semi-)planned obsolescence

● Resource-constrained use cases
– DT boot where full-fledged UEFI is too heavy
– Do we want vanilla Linux on these devices?

● FLOSS firmware (coreboot etc.)
– Projects & users may not want to / cannot support UEFI
– Choices in general

20

Possibility: BPI compatibility

● What does a BPI boot look like?
– UEFI present, but differently

placed & with VA pointers
– Differently shaped memory map

● Shimming
– Again: at which layer?
– Chain-load unmodified kernel if

done before kernel
– Effectively another EFI-stub-like

entry point, if done in kernel OW UEFI

BPI
GRUB2

BPI NW↔
EFI

entrypoint

NW Linux
EFI stub

OW NW↔
GRUB2

OW NW↔
UEFI shim

NW Linux
-or-

GRUB2

EFI stub
entrypoint

21

Possibility: DT boot

● Likely doable without much friction (unlike what’s
expected for BPI)

● DT standardization
– Both Loongson presenters are not working on

DT kernel AFAIK
– To the people working on this:

Communicate, communicate, communicate!

22

Acknowledgements

● Obligatory thanks to my employer and Loongson
● Community power!

– dilfridge and sam from Gentoo
– @FlyGoat, @HougeLangley, @phorcys,

@prcups, @Rabenda, @xry111, and others in the
Telegram Loongson user group

– Countless others

https://github.com/FlyGoat
https://github.com/HougeLangley
https://github.com/phorcys
https://github.com/prcups
https://github.com/Rabenda
https://github.com/xry111
https://t.me/loongson_users

Thanks!
and Q & A time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

