Linux Plumbers Conference 2022

Contribution ID: 178 Type: not specified

Kernel ABI Monitoring and Toolchain Support

Wednesday 14 September 2022 12:45 (45 minutes)

The new CTF(Compact C Type Format) supported in libabigail is able

to extract a corpus representation for the debug information in

Kernel binary and its modules, i.e, entire Kernel release (kernel +
modules). Using CTF reader improvements the time to extract and build
the corpus compared with DWARF reader, for example, extracting ABI
information from the Linux kernel takes up to ~4.5times less

time, this was done using a Kernel compiled by GCC, nowadays LLVM
doesn’t support binaries generation with CTF debug info, would be nice
to have this.

But what about of the modules inserted (loaded) at runtime in the
Kernel image?. To make the comparison it uses kKABI scripts this is
useful among other things to load modules with compatible kABI, this
mechanism allows modules to be used with a different kernel version
that of the kernel for which it was built. So what of using a single
notion of ABI (libabigail) also for the modules loader?

Since we add support for CTF in libabigail, is needed the patch

for building the Kernel with CTF enabled in the Kernel upstream
configuration. Also some GCC attributes that affect the ABI and

are used by kernel hackers like noreturn, interrupt, etc. are not
represented in DWARF/CTF debug format and therefore they are not
present in the corpus.

A stricter conformance to DWAREF standards would be nice, full DWARF 5
support, getting things like ARM64 ABI extensions (e.g., for HWASAN)
into things like elfutils at the same time as the compile-link

toolchain, more consistency between Clang and GCC debug info for the
same sources, the same for Clang and Clang with full LTO. And an
extending ABI monitoring coverage beyond just architecture, symbols
and types / dealing with header constants, macros and more

The interest in discussing ways to standardize ABI and type

information in a way that it can be embedded into binaries in a less
ambiguous way. In other words, what can we do to not rely entirely on
intermediate formats like CTF or DWARF to make sense of an ABI? Maybe
CTF is already a good starting point, yet some additions are needed

(e.g. other language features like for C++)?

I agree to abide by the anti-harassment policy
Yes



Primary authors: Mr SEKETELI Dodji; Mr PROCIDA, Giuliano; Mr MARTINEZ, Guillermo E.; Mr MAN-
NICH, Matthias

Presenters: Mr SEKETELIL Dodji; Mr PROCIDA, Giuliano; Mr MARTINEZ, Guillermo E.; Mr MANNICH,
Matthias

Session Classification: Toolchains

Track Classification: Toolchains Track



