
Preserving State for Fast Hypervisor Update
Pasha Tatashin, Google / Microsoft

Outline

● Fast Hypervisor Update Introduction
● Hot-patching and Live Migration vs. Fast Local Update
● Fast Local Update
● Recent Publications
● Fast Local Update: Building Blocks
● Fast Local Update: Demo Cloud Hypervisor
● Fast Local Update: Data for QEMU
● Discussion topics:

○ Emulated PMEM Interface
○ Preserving device state across reboot
○ Support for Virtual Functions

● Future: Multi-root update

Fast Hypervisor Update Introduction

● Cloud relies on virtualization

● Hypervisors must be provisioned with
minimal disruption for the tenants

● Shutting down VMs is not an option,
therefore a fast traditional reboot is
not a solution Availability

Security

Performance

Stability Functionality

Hot-patching and Live Migration vs. Fast Local Update

● Hot Patching - Excellent for quick security fixes, not an update solution.
○ Extra development expenses
○ Maintenance matrix complexity
○ Limited inlined functions and macros support
○ Limited data structures modification
○ Not a software update
○ Slowdown
○ Extra testing
○ Kernel rejuvenation

● Live Migration - Excellent for hardware provisioning, and load balancing.
○ Additional network traffic
○ Keeping device state challenges
○ Virtual machine utilization dependence
○ Extra hardware availability

Fast Local Update

● Being able to update all parts of virtualization stack without terminating
virtual machines locally on the host

● The software parts may include: VMM, Driver Modules, Kernel, and Firmware

User
Applications

Pool
hardware
resources

Guest Operating Systems

Cloud Management
Software

Host Operating System / Hypervisor

Firmware

VMM ...Virtual Machines...

Guest
Cloud
Agents

(optional)

Hardware

Recent Publications

● Bagdi, H., Kugve, R., and Gopalan, K. (2017). Hyperfresh: Live refresh of hypervisors using
nested virtualization.

● Zhang, X., Zheng, X., Wang, Z., Li, Q., Fu, J., Zhang, Y., and Shen, Y. (2019). Fast and
scalable VMM live upgrade in large cloud infrastructure.

● Sistare, Steven (2020). Qemu live update. In KVM Forum 2020 Lyon, France.
● Zeng, Jason (2019). Seamless cloud system upgrade with vmm fast restart. In KVM

Forum 2019 Lyon, France.
● Zeng, Jason (2020). Device keepalive state for local live migration and vmm fast restart.

In KVM Forum 2020 Lyon, France.
● Russinovich, Mark, et al. "Virtual machine preserving host updates for zero day patching

in public cloud." Proceedings of the Sixteenth European Conference on Computer
Systems. 2021.

● Pacheco, Dino Lopez, et al. "Hy-FiX: Fast In-place Upgrades of KVM Hypervisors." IEEE
transactions on cloud computing (2021)

● Tatashin, Pavel, and William Moloney. "In-Place VM Migration for Fast Update of
Hypervisor Stack." Intelligent Computing. Springer, Cham, 2022

● Tatashin, Pavel, and William Moloney. "Seamless Update of a Hypervisor Stack."
Intelligent Computing. Springer, Cham, 2022

Fast Local Update: Building Blocks

● Kexec
○ Fast reboot
○ Skip firmware reset
○ Enables memory state preservation

● Local Live Migration
○ Migration to a file, or snapshotting
○ Preserves the VM state across reboot, so hypervisor can be rebooted

● Emulated PMEM + DAX + EXT4
○ Allows using VM memory as a file on a RAM based filesystem without

pagechache
○ Enables skipping memory copy during local live migration
○ Enables preserving VM state across reboot

Fast Hypervisor Update: Demo Cloud Hypervisor

● Link to the demo
https://youtu.be/fRLYCeyQLcI

Fast Hypervisor Update: Data for QEMU

Machine
VM
Suspend VM Save

QEMU
Shutdown

Userland
Shutdown

Kernel
Shutdown

Kernel
Startup

Userland
Startup

QEMU
Startup

VM
Restore

VM
Resume Total

AMD 3950x 0.0021 0.282 0.042 0.1051 0.5405 1.3324 0.1166 0.1368 0.0021 0.0157 2.5753

Xeon 8272CL 0.0297 0.3537 0.0656 0.2857 1.1296 2.9323 0.3571 0.2898 0.0045 0.0309 5.4789

Discussion topics: Emulated PMEM Interface

● Emulated PMEM can be created in three ways
○ UEFI marks part of regular memory as Type 7
○ Add pmem node under root node in the device tree
○ Kernel parameter memmap=nn[KMG]!ss[KMG]

● The admin must know the intimate knowledge about the physical memory
layout.

● Not portable

● “Legacy” PMEM?

Discussion topics: Preserving Device State Across Reboot

● For Intel IOMMU based device the preserved state includes saving the
following data across reboot:

●
○ VMX posted interrupts tables and soft data structures
○ IOMMU page tables and soft data structures
○ Interrupt Remappings soft data structures
○ PCI soft data structures
○ VFIO PCI soft data structures

● The soft data structures are relatively small in size and can be portably
passed from one kernel to another, but interrupt tables, and page tables
which are configured for the devices must stay in place.

● Can we use the same memory where the rest of VM memory is preserved to
create those data structures?

Discussion topics: Support for Virtual Functions

Host System

VF
1

VF
2

VM1 VM2

Network Card

PCI BUS

Hypervisor

I/O Domain Driver for
Network Card

Fake
VF1

Fake
VF2

Future: Multi-root update

...VM1

Old hypervisor

U
pd

at
e

se
qu

en
ce

Hardware

VMnVM2

...VM1

Old hypervisor

Hardware

VMnVM2

...VM1

New hypervisor

Hardware

VMnVM2

New
hypervisor

● Dual boot can be achieved with a modified
kexec call that starts new kernel on offlined
CPUs and with specifically configured
memmap parameter without shutting down
the current kernel.

● Pass the VM handling from one hypervisor to
another on the fly by using local live
migration, and PMEM.

● Pass the passthrough device states by passing
the preserved soft data structures, and also
the device state that was also allocated on
PMEM with VMs.

Questions

Thank you

