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OpenACC “kernels” 
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OpenACC: A very quick review
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subroutine row_sum(input, sums)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
    integer :: input(:,:)                                                                                                                                                                                                                                                                 
    integer :: sums(:)                                                                                                                                                                                                                                                                  
    integer :: i,j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
    integer :: sum                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                          
    do i = 1, size(input, 1)                                                                                                                                                                                                                                                             
       sum = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
       do j = 1, size(input, 2)                                                                                                                                                                                                                                                          
          sum = sum + input(i,j)                                                                                                                                                                                                                                                         
       end do                                                                                                                                                                                                                                                                             
       sums(i) = sum                                                                                                                                                                                                                                                                    
    end do                                                                                                                                                                                                                                                                                
  end subroutine row_sum 

subroutine row_sum(input, sums)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
    integer :: input(:,:)                                                                                                                                                                                                                                                                 
    integer :: sums(:)                                                                                                                                                                                                                                                                  
    integer :: i,j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
    integer :: sum                                                                                                                                                                                                                                                                        
    !acc parallel copyin(input) copyout(sums) private(sum)
    !acc loop independent                                                                                                                                                                                                                                                                                   
    do i = 1, size(input, 1)                                                                                                                                                                                                                                                             
       sum = 0                 
       !pragma acc loop seq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
       do j = 1, size(input, 2)                                                                                                                                                                                                                                                          
          sum = sum + input(i,j)                                                                                                                                                                                                                                                         
       end do                                                                                                                                                                                                                                                                             
       sums(i) = sum                                                                                                                                                                                                                                                                    
    end do
    !acc end parallel                                                                                                                                                                                                                                                                 
  end subroutine row_sum 

subroutine row_sum(input, sums)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
    integer :: input(:,:)                                                                                                                                                                                                                                                                 
    integer :: sums(:)                                                                                                                                                                                                                                                                  
    integer :: i,j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
    integer :: sum                                                                                                                                                                                                                                                                        
    !acc kernels
    do i = 1, size(input, 1)                                                                                                                                                                                                                                                             
       sum = 0                 
       do j = 1, size(input, 2)                                                                                                                                                                                                                                                          
          sum = sum + input(i,j)                                                                                                                                                                                                                                                         
       end do                                                                                                                                                                                                                                                                             
       sums(i) = sum                                                                                                                                                                                                                                                                    
    end do
    !acc end kernels                                                                                                                                                                                                                                                                   
  end subroutine row_sum 



OpenACC “kernels” in GCC
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So far:
● Different internal representation than “acc parallel” regions with many restrictions (e.g. no explicit “reduction” clauses)
● Data-dependence analysis in “parloops” pass
● Restricted assignment of parallel execution dimensions

=> unable to analyze/parallelize real HPC code => bad performance
 

New:
● Lift restrictions on “acc kernels” regions

○ Allow automatic annotation of inner loops in “kernels” regions
○ Allow calls to builtins and intrinsics
○ Allow more general loop bound expressions in “kernels” loops 

● Unify internal representation of “kernels” and “parallel” regions
● Use more powerful data-dependence analysis based on “Graphite”

Status:
● Commit to devel/omp/gcc-11 branch soon
● Submission for mainline soon after



Graphite
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Graphite
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● Generic framework for data-dependence analysis and loop-transformations.

Pros and Cons:
+ Well-understood approach
+ Can already represent a wide class of loops
+ Quite stable
- Development of Graphite has become stagnant

But polyhedral compilation is alive (e.g. LLVM Polly) and we can catch up with recent developments!
- Some restrictions need to be lifted to make it work well on real-world code

● Current uses in GCC:
○ “-floop-parallelize-all”
○ “-floop-nest-optimize” 

● Based on geometrical “polyhedral compilation” approach:
○ Loops become polyhedra
○ Enables use of mathematical tools on this representation (e.g. integer linear programming) for analysis and transformation
○ Complete representation of the loop structure, can be transformed back to GIMPLE



Graphite for OpenACC
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Some difficulties:
● Graphite runs much later than OpenACC lowering => OpenACC device lowering pass must 

be moved
● Optimization passes now have to deal with OpenACC’s internal function calls
● Graphite works on CFG loops and does not understand OpenACC’s loop structure

○ OpenACC lowering introduces additional CFG loops and dependences
■ Pretend to Graphite that it analyzes the “original” loop
■ Graphite must know about “private”, “firstprivate” variables and remove fake 

dependences
○ Some parallelization-enabling transformations have not occurred when Graphite runs

■ Graphite must remove “reduction” dependences
○ => We use Graphite data-dependence analysis only and skip code generation
○ => Future project? Teach Graphite’s code generation to preserve the OpenACC loop 

structure to enable its use for code transformations

Rough outline of OpenACC region representation:
● Outline “parallel”, “kernels” etc. regions into a function (“.omp_fn”) very early in the pass pipeline
● Represent information about OpenACC loop structure, clauses etc. in internal function calls
● Lower internal function calls in a later step in a offloading device specific way

○ => loop bounds now depend on runtime information!



Graphite enhancements
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Data-dependence analysis is much more important for OpenACC kernels than for previous use cases.

● Lift simple restrictions for OpenACC outlined functions:
○ Increase parameter values meant to restrict resource use

■ “kernels” regions are usually small and Graphite’s heavy resource use is not a major problem
○ Operate on otherwise “unprofitable” loop-nests (loop-nests oft depth 1, not iterating loops etc.)

● Support runtime alias checking
○ Graphite must know which data-references might alias
○ Old approach: Bail out if aliasing cannot be analyzed statically

■ Not acceptable: rules out most non-trivial C code, a lot of Fortran code
○ New approach: 

■ Continue Graphite execution if aliasing cannot be analyzed statically
■ Remember unanalyzed data-reference pairs
■ Create runtime alias check expression for all such data-references in a SCoP
■ Fallback to sequential execution of all loops in SCoP if aliasing is detected at runtime



 Other Improvements
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Supporting enhancements: Delinearized Array Accesses
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● Delinearization of array accesses in the Fortran frontend
○ C-style dynamical multidimensional array access is linearized:

■ A[i][j] becomes *((int*)A + i*n + j)
■ Not an affine expression of the variables => cannot be represented by Graphite
■ Fortran has proper multidimensional arrays, but uses the same kind of representation internally

● Solution: Change Fortran frontend to emit nested ARRAY_REFs for the individual dimensions instead of a linearized 
expression

● Status: Working; some case are not covered yet (e.g. scalarized array accesses)

Possible improvement: Middle-end delinearization
● Delinearization at the GIMPLE level or at the data reference level (tree-data-ref.c) 
● All languages could benefit from this
● See e.g. “Optimistic Delinearization of Parametrically Sized Arrays” [Grosser, Ramanujam, Pouchet, Sadayappan, Pop 

ICS 15]



Supporting enhancements: OpenACC synthetic “private” clauses
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● Automatically add “private” clauses to “kernels” regions
● New pass pass_omp_data_optimize
● Runs before pass_lower_omp
● Adds “private” to whole regions only

Ideas for improvements: 
● Synthetic “reduction” clauses.
● Synthetic clauses on loops

○ Run later as loop optimization pass?
○ Would have to repeat “private” clause lowering



 Final Example
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OpenACC: Final Example
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subroutine row_sum(input, sums)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
    integer :: input(:,:)                                                                                                                                                                                                                                                                 
    integer :: sums(:)                                                                                                                                                                                                                                                                  
    integer :: i,j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
    integer :: sum                                                                                                                                                                                                                                                                        
    !acc parallel copyin(input) copyout(sums) private(sum)
    !acc loop independent                                                                                                                                                                                                                                                                                   
    do i = 1, size(input, 1)                                                                                                                                                                                                                                                             
       sum = 0                 
       !pragma acc loop seq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
       do j = 1, size(input, 2)                                                                                                                                                                                                                                                          
          sum = sum + input(i,j)                                                                                                                                                                                                                                                         
       end do                                                                                                                                                                                                                                                                             
       sums(i) = sum                                                                                                                                                                                                                                                                    
    end do
    !acc end parallel                                                                                                                                                                                                                                                                 
  end subroutine row_sum 

subroutine row_sum(input, sums)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
    integer :: input(:,:)                                                                                                                                                                                                                                                                 
    integer :: sums(:)                                                                                                                                                                                                                                                                  
    integer :: i,j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
    integer :: sum                                                                                                                                                                                                                                                                        
    !acc kernels
    do i = 1, size(input, 1)                                                                                                                                                                                                                                                             
       sum = 0                 
       do j = 1, size(input, 2)                                                                                                                                                                                                                                                          
          sum = sum + input(i,j)                                                                                                                                                                                                                                                         
       end do                                                                                                                                                                                                                                                                             
       sums(i) = sum                                                                                                                                                                                                                                                                    
    end do
    !acc end kernels                                                                                                                                                                                                                                                                   
  end subroutine row_sum 

This code was not parallelized by the old 
“kernels” implementation:

Now it is essentially equivalent to the following 
explicitly parallelized code:
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