
OpenACC “kernels”
Improvements

Linux Plumbers Conference 21 - GNU Tools Track

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.

Agenda
OpenACC “kernels”
Graphite
Other Improvements
Final Example

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 2

OpenACC “kernels”

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 3

OpenACC: A very quick review

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 4

subroutine row_sum(input, sums)
 integer :: input(:,:)
 integer :: sums(:)
 integer :: i,j
 integer :: sum

 do i = 1, size(input, 1)
 sum = 0
 do j = 1, size(input, 2)
 sum = sum + input(i,j)
 end do
 sums(i) = sum
 end do
 end subroutine row_sum

subroutine row_sum(input, sums)
 integer :: input(:,:)
 integer :: sums(:)
 integer :: i,j
 integer :: sum
 !acc parallel copyin(input) copyout(sums) private(sum)
 !acc loop independent
 do i = 1, size(input, 1)
 sum = 0
 !pragma acc loop seq
 do j = 1, size(input, 2)
 sum = sum + input(i,j)
 end do
 sums(i) = sum
 end do
 !acc end parallel
 end subroutine row_sum

subroutine row_sum(input, sums)
 integer :: input(:,:)
 integer :: sums(:)
 integer :: i,j
 integer :: sum
 !acc kernels
 do i = 1, size(input, 1)
 sum = 0
 do j = 1, size(input, 2)
 sum = sum + input(i,j)
 end do
 sums(i) = sum
 end do
 !acc end kernels
 end subroutine row_sum

OpenACC “kernels” in GCC

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 5

So far:
● Different internal representation than “acc parallel” regions with many restrictions (e.g. no explicit “reduction” clauses)
● Data-dependence analysis in “parloops” pass
● Restricted assignment of parallel execution dimensions

=> unable to analyze/parallelize real HPC code => bad performance

New:
● Lift restrictions on “acc kernels” regions

○ Allow automatic annotation of inner loops in “kernels” regions
○ Allow calls to builtins and intrinsics
○ Allow more general loop bound expressions in “kernels” loops

● Unify internal representation of “kernels” and “parallel” regions
● Use more powerful data-dependence analysis based on “Graphite”

Status:
● Commit to devel/omp/gcc-11 branch soon
● Submission for mainline soon after

Graphite

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 6

Graphite

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 7

● Generic framework for data-dependence analysis and loop-transformations.

Pros and Cons:
+ Well-understood approach
+ Can already represent a wide class of loops
+ Quite stable
- Development of Graphite has become stagnant

But polyhedral compilation is alive (e.g. LLVM Polly) and we can catch up with recent developments!
- Some restrictions need to be lifted to make it work well on real-world code

● Current uses in GCC:
○ “-floop-parallelize-all”
○ “-floop-nest-optimize”

● Based on geometrical “polyhedral compilation” approach:
○ Loops become polyhedra
○ Enables use of mathematical tools on this representation (e.g. integer linear programming) for analysis and transformation
○ Complete representation of the loop structure, can be transformed back to GIMPLE

Graphite for OpenACC

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 8

Some difficulties:
● Graphite runs much later than OpenACC lowering => OpenACC device lowering pass must

be moved
● Optimization passes now have to deal with OpenACC’s internal function calls
● Graphite works on CFG loops and does not understand OpenACC’s loop structure

○ OpenACC lowering introduces additional CFG loops and dependences
■ Pretend to Graphite that it analyzes the “original” loop
■ Graphite must know about “private”, “firstprivate” variables and remove fake

dependences
○ Some parallelization-enabling transformations have not occurred when Graphite runs

■ Graphite must remove “reduction” dependences
○ => We use Graphite data-dependence analysis only and skip code generation
○ => Future project? Teach Graphite’s code generation to preserve the OpenACC loop

structure to enable its use for code transformations

Rough outline of OpenACC region representation:
● Outline “parallel”, “kernels” etc. regions into a function (“.omp_fn”) very early in the pass pipeline
● Represent information about OpenACC loop structure, clauses etc. in internal function calls
● Lower internal function calls in a later step in a offloading device specific way

○ => loop bounds now depend on runtime information!

Graphite enhancements

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 9

Data-dependence analysis is much more important for OpenACC kernels than for previous use cases.

● Lift simple restrictions for OpenACC outlined functions:
○ Increase parameter values meant to restrict resource use

■ “kernels” regions are usually small and Graphite’s heavy resource use is not a major problem
○ Operate on otherwise “unprofitable” loop-nests (loop-nests oft depth 1, not iterating loops etc.)

● Support runtime alias checking
○ Graphite must know which data-references might alias
○ Old approach: Bail out if aliasing cannot be analyzed statically

■ Not acceptable: rules out most non-trivial C code, a lot of Fortran code
○ New approach:

■ Continue Graphite execution if aliasing cannot be analyzed statically
■ Remember unanalyzed data-reference pairs
■ Create runtime alias check expression for all such data-references in a SCoP
■ Fallback to sequential execution of all loops in SCoP if aliasing is detected at runtime

 Other Improvements

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 10

Supporting enhancements: Delinearized Array Accesses

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 11

● Delinearization of array accesses in the Fortran frontend
○ C-style dynamical multidimensional array access is linearized:

■ A[i][j] becomes *((int*)A + i*n + j)
■ Not an affine expression of the variables => cannot be represented by Graphite
■ Fortran has proper multidimensional arrays, but uses the same kind of representation internally

● Solution: Change Fortran frontend to emit nested ARRAY_REFs for the individual dimensions instead of a linearized
expression

● Status: Working; some case are not covered yet (e.g. scalarized array accesses)

Possible improvement: Middle-end delinearization
● Delinearization at the GIMPLE level or at the data reference level (tree-data-ref.c)
● All languages could benefit from this
● See e.g. “Optimistic Delinearization of Parametrically Sized Arrays” [Grosser, Ramanujam, Pouchet, Sadayappan, Pop

ICS 15]

Supporting enhancements: OpenACC synthetic “private” clauses

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 12

● Automatically add “private” clauses to “kernels” regions
● New pass pass_omp_data_optimize
● Runs before pass_lower_omp
● Adds “private” to whole regions only

Ideas for improvements:
● Synthetic “reduction” clauses.
● Synthetic clauses on loops

○ Run later as loop optimization pass?
○ Would have to repeat “private” clause lowering

 Final Example

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 13

OpenACC: Final Example

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 14

subroutine row_sum(input, sums)
 integer :: input(:,:)
 integer :: sums(:)
 integer :: i,j
 integer :: sum
 !acc parallel copyin(input) copyout(sums) private(sum)
 !acc loop independent
 do i = 1, size(input, 1)
 sum = 0
 !pragma acc loop seq
 do j = 1, size(input, 2)
 sum = sum + input(i,j)
 end do
 sums(i) = sum
 end do
 !acc end parallel
 end subroutine row_sum

subroutine row_sum(input, sums)
 integer :: input(:,:)
 integer :: sums(:)
 integer :: i,j
 integer :: sum
 !acc kernels
 do i = 1, size(input, 1)
 sum = 0
 do j = 1, size(input, 2)
 sum = sum + input(i,j)
 end do
 sums(i) = sum
 end do
 !acc end kernels
 end subroutine row_sum

This code was not parallelized by the old
“kernels” implementation:

Now it is essentially equivalent to the following
explicitly parallelized code:

Disclaimer

© Siemens 2021

Subject to changes and errors. The information given in this document
only contains general descriptions and/or performance features which
may not always specifically reflect those described, or which may
undergo modification in the course of further development of the
products. The requested performance features are binding only when
they are expressly agreed upon in the concluded contract.

All product designations may be trademarks or other rights of
Siemens AG, its affiliated companies or other companies whose use by
third parties for their own purposes could violate the rights of the
respective owner.

Unrestricted | © Siemens 2021 | 2021-09-21 | Frederik Harwath | OpenACC “kernels” Improvements | Siemens Digital Industries Software | Where today meets tomorrow.Page 15

Acknowledgement
This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC05-00OR22725

