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Overview

● What is -fanalyzer ?
● Internal implementation
● What’s changed so far for GCC 12
● What I hope to change for GCC 12



  

● What is -fanalyzer ?

● Added by me in GCC 10
● -fanalyzer enables a new interprocedural pass
● Performs a much more expensive analysis of the 

code that traditional warnings



  

Internal Implementation

● Builds an “exploded graph” combining control flow 
and data flow

● Nodes in this graph have both:
– Program point (CFG location and call stack)
– State



  

Internal Implementation (2)

● State at a node includes:
– Symbolic memory regions with symbolic values

● e.g. “global variable ‘g’ has value 42”

– Constraints on symbolic values
● e.g. “INIT_VAL(i) < INIT_VAL(n)”

– State machines:
● Per-value

– heap: e.g. “this is a freed pointer”
– taint: “this value is unsanitized and attacker-controlled”

● Global: “are we in a signal handler?”



  

Internal Implementation (3)

● Neither sound nor complete: can have false negatives 
and false positives

● Diagnostics are:
– Captured at nodes
– De-duplicated
– Checked for feasibility (path conditions)
– Expressed to the user using paths through the code



  

GCC 10: 15 new warnings
● -Wanalyzer-double-free
● -Wanalyzer-use-after-free
● -Wanalyzer-free-of-non-heap
● -Wanalyzer-malloc-leak

● -Wanalyzer-possible-null-argument
● -Wanalyzer-possible-null-dereference
● -Wanalyzer-null-argument
● -Wanalyzer-null-dereference

-Wanalyzer-double-fclose
-Wanalyzer-file-leak

-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-use-of-pointer-in-stale-stack-
frame

-Wanalyzer-unsafe-call-within-signal-
handler

-Wanalyzer-tainted-array-index

-Wanalyzer-exposure-through-output-file



  

GCC 11: 5 new warnings

● -Wanalyzer-mismatching-deallocation
– __attribute__((malloc, “what_frees_this”))

● -Wanalyzer-shift-count-negative
● -Wanalyzer-shift-count-overflow
● -Wanalyzer-write-to-const
● -Wanalyzer-write-to-string-literal



  

GCC 11: plugin support

● Plugins can extend the analyzer, allowing domain-
specific path-sensitive warnings.

● Example (from testsuite): checking for misuses of 
CPython's global interpreter lock



  

GCC 11: plugin support (2)
gil-1.c: In function ‘test_2’:
gil-1.c:16:3: warning: use of PyObject ‘*obj’ without the GIL
   16 |   Py_INCREF (obj);
      |   ^~~~~~~~~
  ‘test_2’: events 1-2
    |
    |   14 |   Py_BEGIN_ALLOW_THREADS
    |      |   ^~~~~~~~~~~~~~~~~~~~~~
    |      |   |
    |      |   (1) releasing the GIL here
    |   15 | 
    |   16 |   Py_INCREF (obj);
    |      |   ~~~~~~~~~
    |      |   |
    |      |   (2) PyObject ‘*obj’ used here without the GIL
    |



  

What to focus on for GCC 12?

● C++ support?
● Buffer overflow detection?
● Kernel support?



  

C++ support?

● new/delete
– Implemented in GCC 11 (but without exception-handling support...)

● Virtual functions
– Implemented for GCC 12 by Ankur Saini (GSoC 2021 student)

● Generalizing function pointer analysis

● Exception-handling
– Not yet implemented (hard)

● RTTI
– Not yet implemented (moderate)

https://gist.github.com/Arsenic-ATG/8f4ac194f460dd9b2c78cf51af39afef


  

Buffer overflow detection?

● Experimented with implementing this
● -fanalyzer in trunk (for GCC 12) now:

– captures the sizes of dynamic allocations as symbolic 
values (e.g “extents (*ptr) == (N * 8) + 64”)

– has a consistent place for adding diagnostics about 
memory accesses (reads and writes)

– But...



  

Buffer overflow detection (2)

● I tried verifying that all memory accesses are within 
bounds

● Is this access:
– Known to be fully within bounds?
– Known to be (at least partially) outside bounds?
– Unknown if fully within bounds?



  

Buffer overflow detection (3)

● “What are the symbolic conditions that hold for this 
memory access to be valid?”
– Known valid
– Known invalid: report

● should I implement this?

– Unknown: what to do?
● “warning: possible out-of-bounds write to ‘arr[i]’ when ‘i >= n’ or  ‘i < 0’”
● ...but maybe that can’t happen



  

Buffer overflow detection (4)

● Too many false positives: a wall of noise
● Insight: can an attacker influence this?

– Revisit of taint detection
● What are the “trust boundaries” in the code?
● What is the “attack surface” of the code?



  

Finding trust boundaries

● Aha: the Linux kernel
– Boundary between user space and kernel space

● copy_from_user, copy_to_user
● system calls
● ioctls and other callbacks



  

Marking trust boundaries

extern long copy_to_user(void __user *to, const void *from, unsigned long n)
  __attribute__((access (untrusted_write, 1, 3),

            access (read_only, 2, 3)));
extern long copy_from_user(void *to, const void __user *from, long n)
  __attribute__((access (write_only, 1, 3),

            access (untrusted_read, 2, 3)));

#define __SYSCALL_DEFINEx(x, name, ...)   \
asmlinkage __attribute__((tainted))        \
long sys##name(__SC_DECL##x(__VA_ARGS__))

struct configfs_attribute {
/* … */
ssize_t (*store)(struct config_item *, const char *, size_t) __attribute__((tainted));

};



  

Looking at historical kernel 
CVEs

● What can the analyzer detect?
– Infoleaks (information disclosure)

● Uninitialized kernel memory being copied to user space
● Relatively easy to detect, relatively low severity (mitigated by new -

ftrivial-auto-var-init option)

– Taint (data from untrusted source used at trusting sink)
● e.g. user-space/network data used as array index/allocation size
● Harder to detect, relatively higher importance (denial of service, privilege 

escalation, etc)



  

Infoleak detection (1):
CVE-2017-18549

#define AAC_SENSE_BUFFERSIZE 30
struct aac_srb_reply
{

__le32 status;
__le32 srb_status;
__le32 scsi_status;
__le32 data_xfer_length;
__le32 sense_data_size;
u8 sense_data[AAC_SENSE_BUFFERSIZE];

};



  

Infoleak detection (2):
CVE-2017-18549

static int aac_send_raw_srb(/* [...snip...] */, void __user *user_reply)
{

/* [...snip...] */

struct aac_srb_reply reply;

reply.status = ST_OK;
/* [...snip...] */
reply.srb_status = SRB_STATUS_SUCCESS;
reply.scsi_status = 0;
reply.data_xfer_length = byte_count;
reply.sense_data_size = 0;
memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);

if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
   ..etc...

}



  

Infoleak detection (3):
CVE-2017-18549

infoleak-CVE-2017-18549-1.c: In function ‘aac_send_raw_srb’:
infoleak-CVE-2017-18549-1.c:66:13: warning: potential exposure of sensitive information by copying uninitialized data from 
stack across trust boundary [CWE-200] [-Wanalyzer-exposure-through-uninit-copy]
   66 |         if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
      |             ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  ‘aac_send_raw_srb’: events 1-3
    |
    |   52 |         struct aac_srb_reply reply;
    |      |                              ^~~~~
    |      |                              |
    |      |                              (1) source region created on stack here
    |      |                              (2) capacity: 52 bytes
    |......
    |   66 |         if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
    |      |             ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    |      |             |
    |      |             (3) uninitialized data copied from stack here
    |



  

Infoleak detection (4):
CVE-2017-18549

infoleak-CVE-2017-18549-1.c:66:13: note: 2 bytes are uninitialized
   66 |         if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
      |             ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
infoleak-CVE-2017-18549-1.c:37:25: note: padding after field ‘sense_data’ is 
uninitialized (2 bytes)
   37 |         u8              sense_data[AAC_SENSE_BUFFERSIZE];
      |                         ^~~~~~~~~~
infoleak-CVE-2017-18549-1.c:52:30: note: suggest forcing zero-initialization by 
providing a ‘{0}’ initializer
   52 |         struct aac_srb_reply reply;
      |                              ^~~~~
      |                                    = {0}



  

Infoleak detection (5)

● Requires tracking uninitialized data…

-Wanalyzer-use-of-uninitialized-value
● Various prerequisites:

– Had to reimplement the “store”
– Had to fix how bitfields are handled
– Had to fix/rewrite how switch statements are handled

https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=e61ffa201403e3814a43b176883e176716b1492f
https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=d3b1ef7a83c0c0cd5b20a1dd1714b868f3d2b442
https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=8ca7fa84a3af355c3e2bbda2acc61934c16078b2


  

Infoleak detection (6)

{
  struct foo st;
  int err = copy_from_user (&st, src, sizeof(st));
  /* do stuff with “st” */
  err |= copy_to_user (dst, &st, sizeof(st));

  if (err)
    return -EFAULT;
  return 0;
}



  

Infoleak detection (7)

● Requires “bifurcating” the analysis
– “when ‘copy_from_user’ fails”

● Also useful for handling “realloc”, with 3 outcomes:
– “Success, in-place (without moving)”
– “Success, moving to a new location”
– “Failure”

● eafa9d969237fd8f712c4b25a8c58932c01f44b4

https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=eafa9d969237fd8f712c4b25a8c58932c01f44b4


  

Taint detection (1)
CVE 2011-0521

/* Example edited for brevity.  */
struct ca_slot_info_t {

int num; /* slot number */
ca_slot_info_t ci_slot[2];

} sbuf;
if (copy_from_user(&sbuf, (void __user *)arg, sizeof(sbuf)) != 0)
  return -1;
ca_slot_info_t *info= &sbuf;
if (info->num > 1)
  return -EINVAL;
av7110->ci_slot[info->num].num = info->num;
/* ...etc...  */



  

Taint detection (2)
CVE 2011-0521 (cont’d)

taint-CVE-2011-0521.c: In function ‘test_1’:
taint-CVE-2011-0521.c:321:40: warning: use of attacker-controlled value ‘*info.num’ in array lookup
 without checking for negative [CWE-129] [-Wanalyzer-tainted-array-index]
  321 |         av7110->ci_slot[info->num].num = info->num;
      |         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
  ‘test_1’: events 1-5
    |
    |  310 |         if (copy_from_user(&sbuf, (void __user *)arg, sizeof(sbuf)) != 0)
    |      |            ^
    |      |            |
    |      |            (1) following ‘false’ branch...
    |......
    |  313 |         struct dvb_device *dvbdev = file->private_data;
    |      |                            ~~~~~~
    |      |                            |
    |      |                            (2) ...to here



  

Taint detection (3)
CVE 2011-0521 (cont’d)

    |......
    |  318 |         if (info->num > 1)
    |      |            ~
    |      |            |
    |      |            (3) following ‘false’ branch...
    |......
    |  321 |         av7110->ci_slot[info->num].num = info->num;
    |      |         ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    |      |                             |          |
    |      |                             |          (5) use of attacker-controlled value 
‘*info.num’ in array lookup without checking for negative
    |      |                             (4) ...to here
    |



  

Integration testing

● Can we detect problems when using the system 
kernel headers?

● antipatterns.ko – the world’s worst kernel module?
– https://github.com/davidmalcolm/antipatterns.ko

https://github.com/davidmalcolm/antipatterns.ko


  

-fanalyzer on the kernel

● The Linux kernel uses a lot of inline asm
● I’ve implemented some analyzer support for inline 

asm
– But just to suppress false positives
– See ded2c2c068f6f2825474758cb03a05070a5837e8 for 

the gory details

https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=ded2c2c068f6f2825474758cb03a05070a5837e8


  

-fanalyzer on the kernel (2)

● I have an automated script to build a custom GCC, 
and the build the kernel using it

● Running it on Fedora, RHEL, and upstream kernels
– Fixing false positives

● Found an issue in “allyesconfig” upstream kernel



  

Current Status

● In trunk for GCC 12:
– -Wanalyzer-use-of-uninitialized-value

● Per-bit tracking of uninitialized status

– Various other cleanups and infrastructure needed by 
infoleak and taint



  

Current Status (2)

● Infoleak detection:
– not yet in trunk, but mostly ready to go in, but:

● What should syntax be?
● Where should code live?

● Taint detection:
– I’m still working on this; hope to have it done by close of stage 1

● Similar syntax/scope considerations apply



  

Summary

● -fanalyzer and its internal implementation
● Improvements in GCC to C handling

– Uninitialized value detection

● Linux kernel-specific warnings relating to user-
space/kernel-space boundary



  

● Thanks for listening!
● Thanks to LPC for hosting us
● Project homepage:

https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer
● Session on this at Kernel Dependability & Assurance mini-

conference on Thursday

Q&A

https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer
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