

GCC's -fanalyzer option: what's new in GCC 12?

David Malcolm <dmalcolm@redhat.com>

Overview

● What is -fanalyzer ?
● Internal implementation
● What’s changed so far for GCC 12
● What I hope to change for GCC 12

● What is -fanalyzer ?

● Added by me in GCC 10
● -fanalyzer enables a new interprocedural pass
● Performs a much more expensive analysis of the

code that traditional warnings

Internal Implementation

● Builds an “exploded graph” combining control flow
and data flow

● Nodes in this graph have both:
– Program point (CFG location and call stack)
– State

Internal Implementation (2)

● State at a node includes:
– Symbolic memory regions with symbolic values

● e.g. “global variable ‘g’ has value 42”

– Constraints on symbolic values
● e.g. “INIT_VAL(i) < INIT_VAL(n)”

– State machines:
● Per-value

– heap: e.g. “this is a freed pointer”
– taint: “this value is unsanitized and attacker-controlled”

● Global: “are we in a signal handler?”

Internal Implementation (3)

● Neither sound nor complete: can have false negatives
and false positives

● Diagnostics are:
– Captured at nodes
– De-duplicated
– Checked for feasibility (path conditions)
– Expressed to the user using paths through the code

GCC 10: 15 new warnings
● -Wanalyzer-double-free
● -Wanalyzer-use-after-free
● -Wanalyzer-free-of-non-heap
● -Wanalyzer-malloc-leak

● -Wanalyzer-possible-null-argument
● -Wanalyzer-possible-null-dereference
● -Wanalyzer-null-argument
● -Wanalyzer-null-dereference

-Wanalyzer-double-fclose
-Wanalyzer-file-leak

-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-use-of-pointer-in-stale-stack-
frame

-Wanalyzer-unsafe-call-within-signal-
handler

-Wanalyzer-tainted-array-index

-Wanalyzer-exposure-through-output-file

GCC 11: 5 new warnings

● -Wanalyzer-mismatching-deallocation
– __attribute__((malloc, “what_frees_this”))

● -Wanalyzer-shift-count-negative
● -Wanalyzer-shift-count-overflow
● -Wanalyzer-write-to-const
● -Wanalyzer-write-to-string-literal

GCC 11: plugin support

● Plugins can extend the analyzer, allowing domain-
specific path-sensitive warnings.

● Example (from testsuite): checking for misuses of
CPython's global interpreter lock

GCC 11: plugin support (2)
gil-1.c: In function ‘test_2’:
gil-1.c:16:3: warning: use of PyObject ‘*obj’ without the GIL
 16 | Py_INCREF (obj);
 | ^~~~~~~~~
 ‘test_2’: events 1-2
 |
 | 14 | Py_BEGIN_ALLOW_THREADS
 | | ^~~~~~~~~~~~~~~~~~~~~~
 | | |
 | | (1) releasing the GIL here
 | 15 |
 | 16 | Py_INCREF (obj);
 | | ~~~~~~~~~
 | | |
 | | (2) PyObject ‘*obj’ used here without the GIL
 |

What to focus on for GCC 12?

● C++ support?
● Buffer overflow detection?
● Kernel support?

C++ support?

● new/delete
– Implemented in GCC 11 (but without exception-handling support...)

● Virtual functions
– Implemented for GCC 12 by Ankur Saini (GSoC 2021 student)

● Generalizing function pointer analysis

● Exception-handling
– Not yet implemented (hard)

● RTTI
– Not yet implemented (moderate)

https://gist.github.com/Arsenic-ATG/8f4ac194f460dd9b2c78cf51af39afef

Buffer overflow detection?

● Experimented with implementing this
● -fanalyzer in trunk (for GCC 12) now:

– captures the sizes of dynamic allocations as symbolic
values (e.g “extents (*ptr) == (N * 8) + 64”)

– has a consistent place for adding diagnostics about
memory accesses (reads and writes)

– But...

Buffer overflow detection (2)

● I tried verifying that all memory accesses are within
bounds

● Is this access:
– Known to be fully within bounds?
– Known to be (at least partially) outside bounds?
– Unknown if fully within bounds?

Buffer overflow detection (3)

● “What are the symbolic conditions that hold for this
memory access to be valid?”
– Known valid
– Known invalid: report

● should I implement this?

– Unknown: what to do?
● “warning: possible out-of-bounds write to ‘arr[i]’ when ‘i >= n’ or ‘i < 0’”
● ...but maybe that can’t happen

Buffer overflow detection (4)

● Too many false positives: a wall of noise
● Insight: can an attacker influence this?

– Revisit of taint detection
● What are the “trust boundaries” in the code?
● What is the “attack surface” of the code?

Finding trust boundaries

● Aha: the Linux kernel
– Boundary between user space and kernel space

● copy_from_user, copy_to_user
● system calls
● ioctls and other callbacks

Marking trust boundaries

extern long copy_to_user(void __user *to, const void *from, unsigned long n)
 __attribute__((access (untrusted_write, 1, 3),

 access (read_only, 2, 3)));
extern long copy_from_user(void *to, const void __user *from, long n)
 __attribute__((access (write_only, 1, 3),

 access (untrusted_read, 2, 3)));

#define __SYSCALL_DEFINEx(x, name, ...) \
asmlinkage __attribute__((tainted)) \
long sys##name(__SC_DECL##x(__VA_ARGS__))

struct configfs_attribute {
/* … */
ssize_t (*store)(struct config_item *, const char *, size_t) __attribute__((tainted));

};

Looking at historical kernel
CVEs

● What can the analyzer detect?
– Infoleaks (information disclosure)

● Uninitialized kernel memory being copied to user space
● Relatively easy to detect, relatively low severity (mitigated by new -

ftrivial-auto-var-init option)

– Taint (data from untrusted source used at trusting sink)
● e.g. user-space/network data used as array index/allocation size
● Harder to detect, relatively higher importance (denial of service, privilege

escalation, etc)

Infoleak detection (1):
CVE-2017-18549

#define AAC_SENSE_BUFFERSIZE 30
struct aac_srb_reply
{

__le32 status;
__le32 srb_status;
__le32 scsi_status;
__le32 data_xfer_length;
__le32 sense_data_size;
u8 sense_data[AAC_SENSE_BUFFERSIZE];

};

Infoleak detection (2):
CVE-2017-18549

static int aac_send_raw_srb(/* [...snip...] */, void __user *user_reply)
{

/* [...snip...] */

struct aac_srb_reply reply;

reply.status = ST_OK;
/* [...snip...] */
reply.srb_status = SRB_STATUS_SUCCESS;
reply.scsi_status = 0;
reply.data_xfer_length = byte_count;
reply.sense_data_size = 0;
memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);

if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
 ..etc...

}

Infoleak detection (3):
CVE-2017-18549

infoleak-CVE-2017-18549-1.c: In function ‘aac_send_raw_srb’:
infoleak-CVE-2017-18549-1.c:66:13: warning: potential exposure of sensitive information by copying uninitialized data from
stack across trust boundary [CWE-200] [-Wanalyzer-exposure-through-uninit-copy]
 66 | if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
 | ^~~~
 ‘aac_send_raw_srb’: events 1-3
 |
 | 52 | struct aac_srb_reply reply;
 | | ^~~~~
 | | |
 | | (1) source region created on stack here
 | | (2) capacity: 52 bytes
 |......
 | 66 | if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
 | | ~~
 | | |
 | | (3) uninitialized data copied from stack here
 |

Infoleak detection (4):
CVE-2017-18549

infoleak-CVE-2017-18549-1.c:66:13: note: 2 bytes are uninitialized
 66 | if (copy_to_user(user_reply, &reply, sizeof(struct aac_srb_reply))) {
 | ^~~~
infoleak-CVE-2017-18549-1.c:37:25: note: padding after field ‘sense_data’ is
uninitialized (2 bytes)
 37 | u8 sense_data[AAC_SENSE_BUFFERSIZE];
 | ^~~~~~~~~~
infoleak-CVE-2017-18549-1.c:52:30: note: suggest forcing zero-initialization by
providing a ‘{0}’ initializer
 52 | struct aac_srb_reply reply;
 | ^~~~~
 | = {0}

Infoleak detection (5)

● Requires tracking uninitialized data…

-Wanalyzer-use-of-uninitialized-value
● Various prerequisites:

– Had to reimplement the “store”
– Had to fix how bitfields are handled
– Had to fix/rewrite how switch statements are handled

https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=e61ffa201403e3814a43b176883e176716b1492f
https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=d3b1ef7a83c0c0cd5b20a1dd1714b868f3d2b442
https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=8ca7fa84a3af355c3e2bbda2acc61934c16078b2

Infoleak detection (6)

{
 struct foo st;
 int err = copy_from_user (&st, src, sizeof(st));
 /* do stuff with “st” */
 err |= copy_to_user (dst, &st, sizeof(st));

 if (err)
 return -EFAULT;
 return 0;
}

Infoleak detection (7)

● Requires “bifurcating” the analysis
– “when ‘copy_from_user’ fails”

● Also useful for handling “realloc”, with 3 outcomes:
– “Success, in-place (without moving)”
– “Success, moving to a new location”
– “Failure”

● eafa9d969237fd8f712c4b25a8c58932c01f44b4

https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=eafa9d969237fd8f712c4b25a8c58932c01f44b4

Taint detection (1)
CVE 2011-0521

/* Example edited for brevity. */
struct ca_slot_info_t {

int num; /* slot number */
ca_slot_info_t ci_slot[2];

} sbuf;
if (copy_from_user(&sbuf, (void __user *)arg, sizeof(sbuf)) != 0)
 return -1;
ca_slot_info_t *info= &sbuf;
if (info->num > 1)
 return -EINVAL;
av7110->ci_slot[info->num].num = info->num;
/* ...etc... */

Taint detection (2)
CVE 2011-0521 (cont’d)

taint-CVE-2011-0521.c: In function ‘test_1’:
taint-CVE-2011-0521.c:321:40: warning: use of attacker-controlled value ‘*info.num’ in array lookup
 without checking for negative [CWE-129] [-Wanalyzer-tainted-array-index]
 321 | av7110->ci_slot[info->num].num = info->num;
 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~
 ‘test_1’: events 1-5
 |
 | 310 | if (copy_from_user(&sbuf, (void __user *)arg, sizeof(sbuf)) != 0)
 | | ^
 | | |
 | | (1) following ‘false’ branch...
 |......
 | 313 | struct dvb_device *dvbdev = file->private_data;
 | | ~~~~~~
 | | |
 | | (2) ...to here

Taint detection (3)
CVE 2011-0521 (cont’d)

 |......
 | 318 | if (info->num > 1)
 | | ~
 | | |
 | | (3) following ‘false’ branch...
 |......
 | 321 | av7110->ci_slot[info->num].num = info->num;
 | | ~~
 | | | |
 | | | (5) use of attacker-controlled value
‘*info.num’ in array lookup without checking for negative
 | | (4) ...to here
 |

Integration testing

● Can we detect problems when using the system
kernel headers?

● antipatterns.ko – the world’s worst kernel module?
– https://github.com/davidmalcolm/antipatterns.ko

https://github.com/davidmalcolm/antipatterns.ko

-fanalyzer on the kernel

● The Linux kernel uses a lot of inline asm
● I’ve implemented some analyzer support for inline

asm
– But just to suppress false positives
– See ded2c2c068f6f2825474758cb03a05070a5837e8 for

the gory details

https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=ded2c2c068f6f2825474758cb03a05070a5837e8

-fanalyzer on the kernel (2)

● I have an automated script to build a custom GCC,
and the build the kernel using it

● Running it on Fedora, RHEL, and upstream kernels
– Fixing false positives

● Found an issue in “allyesconfig” upstream kernel

Current Status

● In trunk for GCC 12:
– -Wanalyzer-use-of-uninitialized-value

● Per-bit tracking of uninitialized status

– Various other cleanups and infrastructure needed by
infoleak and taint

Current Status (2)

● Infoleak detection:
– not yet in trunk, but mostly ready to go in, but:

● What should syntax be?
● Where should code live?

● Taint detection:
– I’m still working on this; hope to have it done by close of stage 1

● Similar syntax/scope considerations apply

Summary

● -fanalyzer and its internal implementation
● Improvements in GCC to C handling

– Uninitialized value detection

● Linux kernel-specific warnings relating to user-
space/kernel-space boundary

● Thanks for listening!
● Thanks to LPC for hosting us
● Project homepage:

https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer
● Session on this at Kernel Dependability & Assurance mini-

conference on Thursday

Q&A

https://gcc.gnu.org/wiki/DavidMalcolm/StaticAnalyzer

	Title
	Overview
	What is -fanalyzer?
	Internal implementation
	Internal implementation (2)
	Internal implementation (3)
	New warnings in GCC 10
	New warnings in GCC 11
	GCC 11: plugins
	GCC 11: plugins - example
	What to focus on for GCC 12?
	C++ support?
	Buffer overflow detection?
	Buffer overflow detection (2)
	Buffer overflow detection (3)
	Buffer overflow detection (4)
	Finding trust boundaries
	Marking trust boundaries
	Looking at historical kernel CVEs
	Infoleak detection
	Infoleak detection (2)
	Infoleak detection (3)
	Infoleak detection (4)
	Infoleak detection (5)
	Infoleak detection (6)
	Infoleak detection (7)
	Taint detection (1)
	Taint detection (2)
	Taint detection (3)
	antipatterns.ko
	-fanalyzer on the kernel
	-fanalyzer on the kernel (2)
	Current Status
	Current Status (2)
	Summary
	Q&A

