
Consolidating representations of
the physical memory

Mike Rapoport
<rppt@linux.ibm.com>

This project has received funding from the European
Union’s Horizon 2020 research and innovation

programme under grant agreement No 825377

How many end-of-memory variables
you have, grandma!

a comment in x86::setup_arch()

● Flat memory

● No memory hotplug

● No kexec support

csky, h8300, hexagon, microblaze,
nds32, nios2, openrisc, um

Simple cases

Adding complexity

● SPARSEMEM

● Holes in flat memory map

● kexec

● Memory hot(un)plug

● Holes in physical memory do not have memory map
○ Requires custom pfn_valid()

● arc uses old good min_pfn and max_pfn

● m68k has virtually contiguous direct mapping
○ pfn_valid() when virt_addr_valid()

● arm relies on memblock
○ pfn_valid() when memblock_is_memory()

○ Slow with crazy ACPI memory layouts

Holes in memory map

● Relies on resource tree to find free memory
○ “System RAM” is not quite IOMEM

● For !x86 “System RAM” may contain firmware blobs

● Duplicated code in arch/ to register memory resources
○ Can easily go out of sync with memblock and memory map

kexec

● Per architecture representation of hot(un)plugable regions

● Xarray of memory_block’s
○ Until recently memory_block’s were only accessible via memory

device hierarchy

● Duplicated updates of data structures
○ Register resource

○ Create memory block

○ Add memblock

Memory hot(un)plug

Existing representation

● “System RAM” subtree in iomem_resource

● memblock if ARCH_KEEP_MEMBLOCK

● memory_blocks if MEMORY_HOTPLUG

● Architecture specific data structures
○ min_low_pfn, max_low_pfn, min_high_pfn, max_high_pfn
○ m68k::m68k_memory, parisc::pmem_ranges
○ x86::e820, x86::numa_meminfo, powerpc::drmem_lmb

● A collection of contiguous memory banks
○ Up to x86’s first megabyte madness

● A bank
○ Spawns a fixed address range

○ Belongs to a NUMA node

○ May be hot(un)plugged

● Nodes may have hotplug ranges
○ Empty on boot

Physical memory

● Firmware supplies memory description
○ Physical address ranges

○ Ranges used by the firmware
■ Some cannot be mapped in kernel page tables

○ Unusable memory, e.g. because of HW errors

● Free and used memory ranges may or may not intersect
○ device tree vs e820

Kernel view of physical memory

● Representation of the memory bank
○ Address range

○ Attributes
■ Hotpluggable

■ Mapping is prohibited

■ Onlining controls

○ NUMA node

○ struct device for memory hotplug

Physical memory model

● Representation of the occupied memory
○ Address range

○ Attributes
■ Firmware defined type: ACPI tables, EfiRuntimeServicesData, ...

■ Reservation type: unusable, firmware, kernel

■ Mapping is prohibited?

○ NUMA node?

Physical memory model

● A collection to glue memory bank and reserved memory

representations

● Implementation alternatives:
○ Completely new module

○ Based on resource tree

○ Based on memblock

Physical memory model

● Is “System RAM” an IOMEM resource?
○ struct resource defined in include/linux/ioport.h

● IORESOURCE_BITS do not reflect required attributes

● Not supported on all architectures

● Traversals include actual IOMEM resources, burning

cycles for nothing

● Resource requests model is too strict

Resource tree

● Used by all architectures

● Allows adding and reserving memory from the very start
○ Up to reasonable limits

● Comparable in performance with the resource tree

● struct memblock_region has most of the necessary

bits

Memblock

struct memblock_region {

 phys_addr_t base;

 phys_addr_t size;

 enum memblock_flags flags;

#ifdef CONFIG_NUMA

 int nid;

#endif

+#ifdef CONFIG_MEMORY_HOTPLUG

+ struct device *dev;

+#endif

};

enum memblock_flags {

 /* No special request */
 MEMBLOCK_NONE = 0x0,

 /* hotpluggable region */
 MEMBLOCK_HOTPLUG = 0x1,

 /* mirrored region */
 MEMBLOCK_MIRROR = 0x2,

 /* don't add to direct map */
 MEMBLOCK_NOMAP = 0x4,

+ /* unusable */
+ MEMBLOCK_UNUSABLE = 0x8,

+ /* used by firmware */
+ MEMBLOCK_FIRMWARE = 0x10,

};

● No locking

● memblock_remove may fail

● Perceived as an allocator
○ Maybe rename memblock_alloc back to bootmem_alloc?

● x86 has gaps in memblock integration since 2.6

Gaps

● Move “System RAM” setup to memblock
○ https://lore.kernel.org/all/20210531122959.23499-1-rppt@kernel.org

● Add flags for reserved regions

● Make boundary between memory representation and

boot time allocator clearer

Immediate steps

https://lore.kernel.org/all/20210531122959.23499-1-rppt@kernel.org

● Ensure memblock_remove does not fail

● Sort out inconsistencies between architectures and

generic code

● Remove redundant arch-specific data

Longer term

● Convert user visible ABIs to use memblock as “baking

store”
○ /sys/devices/system/memory

○ /sys/firmware/memory

○ /proc/iomem?

● Enable ARCH_KEEP_MEMBLOCK on architectures

supporting memory hotplug

Far fetched

So, what am I missing?

Thank you!

