
Rust for
Linux

Miguel Ojeda
ojeda@kernel.org

Credits & Acknowledgments

Rust
...for being a breath of fresh air

Kernel maintainers
...for being open-minded

Everyone that has helped Rust for Linux
(see credits in the RFC & patch series)

https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/
https://lore.kernel.org/lkml/20210704202756.29107-1-ojeda@kernel.org/

History

30 years of Linux 30 years of ISO C

Love story*

30 years of Linux

❤*

* Terms and Conditions Apply.

30 years of ISO C

An easy task?

An easy task?

“Do you see any language except C which is

suitable for development of operating systems?”

An easy task?

“I like interacting with hardware from a software perspective.

And I have yet to see a language that comes even close to C.”
— Linus Torvalds 2012

“Do you see any language except C which is

suitable for development of operating systems?”

Why is C a good language for the kernel?

“When I read C, I know what the
assembly language will look like.”

“If you think like a computer, writing
C actually makes sense.”

“The people that designed C ... designed it
at a time when compilers had to be simple.”

“You can use C to generate good
code for hardware.” Fast

Low-level

Simple

Fits the domain

But...

But...

UB

So, what does Rust offer?

So, what does Rust offer?

UB
🏖

Safety

Safety in Rust

=
No undefined behavior

Safety

Safety in Rust

≠
Safety in “safety-critical”

as in functional safety (DO-178B/C, ISO 26262, EN 50128…)

Is avoiding UB that important?

Is avoiding UB that important?

~70%
of vulnerabilities in C/C++ projects come from UB

See more at https://www.memorysafety.org/docs/memory-safety/

https://www.memorysafety.org/docs/memory-safety/

Sure, UB is an issue and safe Rust does not have it…

Sure, UB is an issue and safe Rust does not have it…

...does Rust really help, though?

Does Rust help?

Derived using data from https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz

https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz

What else does Rust offer?

Language

What else does Rust offer?

LanguageStricter type system

Safe/unsafe split Sum types

Pattern matching

Generics

RAII

Lifetimes

Shared & exclusive references

Modules & visibility

Powerful hygienic and procedural macros

What else does Rust offer?

Freestanding standard library

What else does Rust offer?

Freestanding standard library

Vocabulary types like
Result and Option

Iterators

FormattingPinning

Checked, saturating & wrapping
integer arithmetic primitives

Tooling

What else does Rust offer?

Tooling

Great compiler error messages

What else does Rust offer?

Documentation generator

Formatter

Linter

Unit & integration tests

UBSAN-like interpreter

Static analyzer

Macro debugging

IDE tooling

C ↔ Rust bindings generators

Tooling

Great compiler error messages

What else does Rust offer?

Documentation generator

Formatter

Linter

Unit & integration tests

plus the usual friends: gdb, lldb, perf, valgrind...
UBSAN-like interpreter

Static analyzer

Macro debugging

IDE tooling

C ↔ Rust bindings generators

What is the catch?

What is the catch?

Cannot model everything ⇒ Unsafe code required

What is the catch?

Cannot model everything ⇒ Unsafe code required

More information to provide ⇒ More complex language

What is the catch?

Cannot model everything ⇒ Unsafe code required

More information to provide ⇒ More complex language

Extra runtime checks ⇒ Potentially expensive

What is the catch?

Cannot model everything ⇒ Unsafe code required

More information to provide ⇒ More complex language

Extra runtime checks ⇒ Potentially expensive

An extra language to learn ⇒ Logistics & maintenance burden

Why is C a good language for the kernel?

“When I read C, I know what the
assembly language will look like.”

“If you think like a computer, writing
C actually makes sense.”

“The people that designed C ... designed it
at a time when compilers had to be simple.”

“You can use C to generate good
code for hardware.” Fast

Low-level

Simple

Fits the domain

Why is C a good language for the kernel?
Rust

Sometimes

Yes

Not really

...

“When I read C, I know what the
assembly language will look like.”

“If you think like a computer, writing
C actually makes sense.”

“The people that designed C ... designed it
at a time when compilers had to be simple.”

“You can use C to generate good
code for hardware.” Fast

Low-level

Simple

Fits the domain

An easy task?

“I like interacting with hardware from a software perspective.

And I have yet to see a language that comes even close to C.”
— Linus Torvalds 2012

“Do you see any language except C which is

suitable for development of operating systems?”

An easy task?

“I like interacting with hardware from a software perspective.

And I have yet to see a language that comes even close to C.”
— Linus Torvalds 2012

“Do you see any language except C which is

suitable for development of operating systems?”

maybe?

Some examples where Rust helps

Building an abstraction

Rust support in the kernel

rust/library/

builtins
crate

macros
crate

alloc
crate

kernel
crate

alloc
crate

core
crate

exports helpers

include/

Module

bindgen

bindings
crate

Rust tree Linux tree

Driver point of view

drivers/

my_foo
driver

include/

bindgen

bindings
crate

kernel
crate

foo
subsystem

bar
subsystem

foo/

Forbidden!

Safe

Abstractions

Unsafe

Linux tree

...

Supported architectures

arm (armv6 only)

arm64

powerpc (ppc64le only)

riscv (riscv64 only)

x86 (x86_64 only)

See Documentation/rust/arch-support.rst

Supported architectures

arm (armv6 only)

arm64

powerpc (ppc64le only)

riscv (riscv64 only)

x86 (x86_64 only)

See Documentation/rust/arch-support.rst

...so far!
32-bit and other restrictions should be easy to remove

Kernel LLVM builds work for mips and s390

GCC codegen paths should open up more

Rust codegen paths for the kernel

rustc_codegen_llvm Rust GCCrustc_codegen_gcc

Main one
Already passes

most rustc tests
Expected in 1-2 years

(rough estimate)

Documentation

Documentation code

/// Wraps the kernel's `struct task_struct`.
///
/// # Invariants
///
/// The pointer `Task::ptr` is non-null and valid. Its reference count is also non-zero.
///
/// # Examples
///
/// The following is an example of getting the PID of the current thread with
/// zero additional cost when compared to the C version:
///
/// ```
/// # use kernel::prelude::*;
/// use kernel::task::Task;
///
/// # fn test() {
/// Task::current().pid();
/// # }
/// ```
pub struct Task {
 pub(crate) ptr: *mut bindings::task_struct,
}

Rust code has access to conditional compilation based on the kernel config

Conditional compilation

#[cfg(CONFIG_X)] // `CONFIG_X` is enabled (`y` or `m`)
#[cfg(CONFIG_X="y")] // `CONFIG_X` is enabled as a built-in (`y`)
#[cfg(CONFIG_X="m")] // `CONFIG_X` is enabled as a module (`m`)
#[cfg(not(CONFIG_X))] // `CONFIG_X` is disabled

Coding guidelines

No direct access to C bindings Rust 2018 edition & idioms

No undocumented public APIs No unneeded panics

No implicit unsafe block No infallible allocations

Docs follows Rust standard library style ...

// SAFETY proofs for all unsafe blocks

Clippy linting enabled

Automatic formatting enforced

Coding guidelines

No direct access to C bindings Rust 2018 edition & idioms

No undocumented public APIs No unneeded panics

No implicit unsafe block No infallible allocations

Docs follows Rust standard library style ...

// SAFETY proofs for all unsafe blocks

Clippy linting enabled

Automatic formatting enforced
Aiming to be as strict as possible

Abstractions code

/// Wraps the kernel's `struct file`.
///
/// # Invariants
///
/// The pointer `File::ptr` is non-null and valid.
/// Its reference count is also non-zero.
pub struct File {
 pub(crate) ptr: *mut bindings::file,
}

impl File {
 /// Constructs a new [`struct file`] wrapper from a file descriptor.
 ///
 /// The file descriptor belongs to the current process.
 pub fn from_fd(fd: u32) -> Result<Self> {
 // SAFETY: FFI call, there are no requirements on `fd`.
 let ptr = unsafe { bindings::fget(fd) };
 if ptr.is_null() {
 return Err(Error::EBADF);
 }

 // INVARIANTS: We checked that `ptr` is non-null, so it is valid.
 // `fget` increments the ref count before returning.
 Ok(Self { ptr })
 }

 // ...
}

Driver code

static int pl061_resume(struct device *dev)
{
 int offset;

 struct pl061 *pl061 = dev_get_drvdata(dev);

 for (offset = 0; offset < PL061_GPIO_NR; offset++) {
 if (pl061->csave_regs.gpio_dir & (BIT(offset)))
 pl061_direction_output(&pl061->gc, offset,
 pl061->csave_regs.gpio_data &
 (BIT(offset)));
 else
 pl061_direction_input(&pl061->gc, offset);

 }

 writeb(pl061->csave_regs.gpio_is, pl061->base + GPIOIS);
 writeb(pl061->csave_regs.gpio_ibe, pl061->base + GPIOIBE);
 writeb(pl061->csave_regs.gpio_iev, pl061->base + GPIOIEV);
 writeb(pl061->csave_regs.gpio_ie, pl061->base + GPIOIE);

 return 0;
}

fn resume(data: &Ref<DeviceData>) -> Result {

 let inner = data.lock();
 let pl061 = data.resources().ok_or(Error::ENXIO)?;

 for offset in 0..PL061_GPIO_NR {
 if inner.csave_regs.gpio_dir & bit(offset) != 0 {
 let v = inner.csave_regs.gpio_data & bit(offset) != 0;
 let _ = <Self as gpio::Chip>::direction_output(
 data, offset.into(), v);
 } else {
 let _ = <Self as gpio::Chip>::direction_input(
 data, offset.into());
 }
 }

 pl061.base.writeb(inner.csave_regs.gpio_is, GPIOIS);
 pl061.base.writeb(inner.csave_regs.gpio_ibe, GPIOIBE);
 pl061.base.writeb(inner.csave_regs.gpio_iev, GPIOIEV);
 pl061.base.writeb(inner.csave_regs.gpio_ie, GPIOIE);

 Ok(())
}

— https://lwn.net/Articles/863459/

https://lwn.net/Articles/863459/

Testing code

fn trim_whitespace(mut data: &[u8]) -> &[u8] {
 // ...
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn test_trim_whitespace() {
 assert_eq!(trim_whitespace(b"foo "), b"foo");
 assert_eq!(trim_whitespace(b" foo"), b"foo");
 assert_eq!(trim_whitespace(b" foo "), b"foo");
 }
}

/// Getting the current task and storing it in some struct. The reference count is automatically
/// incremented when creating `State` and decremented when it is dropped:
///
/// ```
/// # use kernel::prelude::*;
/// use kernel::task::Task;
///
/// struct State {
/// creator: Task,
/// index: u32,
/// }
///
/// impl State {
/// fn new() -> Self {
/// Self {
/// creator: Task::current().clone(),
/// index: 0,
/// }
/// }
/// }
/// ```

How to proceed?

https://github.com/Rust-for-Linux/linux

https://github.com/Rust-for-Linux/linux

Rust for
Linux

Miguel Ojeda
ojeda@kernel.org

Backup slides

C Charter

— N2086 C2x Charter - Original Principles

— N2086 C2x Charter - Additional Principles for C11

Undefined Behavior

— N2596 C2x Working Draft

Example of UB

int f(int a, int b) {
 return a / b;
}

Example of UB

int f(int a, int b) {
 return a / b;
}

UB ∀x f(x, 0);

Example of UB

Any other inputs that trigger UB?

int f(int a, int b) {
 return a / b;
}

Example of UB

UB f(INT_MIN, -1);

Any other inputs that trigger UB?

int f(int a, int b) {
 return a / b;
}

Instances of UB

Instances of UB

Instances of UB

Instances of UB

Instances of UB

Instances of UB

Instances of UB

Instances of UB

Instances of UB

Avoiding UB

int f(int a, int b) {
 if (b == 0)
 abort();

 if (a == INT_MIN && b == -1)
 abort();

 return a / b;
}

Avoiding UB

f is a safe function

int f(int a, int b) {
 if (b == 0)
 abort();

 if (a == INT_MIN && b == -1)
 abort();

 return a / b;
}

Safe function

f is a safe function

int f(int a, int b) [[safe]] {
 if (b == 0)
 abort();

 if (a == INT_MIN && b == -1)
 abort();

 return a / b;
}

Not C

Safe function

f is a safe function

int f(int a, int b) [[safe]] {
 if (b == 0)
 abort();

 if (a == INT_MIN && b == -1)
 abort();

 return a / b;
}

(yet? N2659)
Not C

Safety examples

abort()s in C

are
Rust-safe

⇒

Safety examples

abort()s in C

are
Rust-safe

⇒

Even if your company goes bankrupt.

Safety examples

abort()s in C

are
Rust-safe

⇒

Even if your company goes bankrupt.

Even if somebody is injured.

Safety examples

Rust panics

are
Rust-safe

⇒

Safety examples

Kernel panics

are
Rust-safe

⇒

Safety examples

Uses after free, null derefs, double frees,

OOB accesses, uninitialized memory reads,

invalid inhabitants, data races...

are not
Rust-safe

⇒

Safety examples

Uses after free, null derefs, double frees,

OOB accesses, uninitialized memory reads,

invalid inhabitants, data races...

are not
Rust-safe

⇒

Even if your system still works.

Safety examples

⇒

Race conditions

are
Rust-safe

Safety examples

⇒

Memory leaks

are
Rust-safe

Safety examples

⇒

Deadlocks

are
Rust-safe

Safety examples

⇒

Integer overflows

are
Rust-safe

Is avoiding UB that important?

— https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/

https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/

Is avoiding UB that important?

— https://langui.sh/2019/07/23/apple-memory-safety/

https://langui.sh/2019/07/23/apple-memory-safety/

Is avoiding UB that important?

— https://www.chromium.org/Home/chromium-security/memory-safety

https://www.chromium.org/Home/chromium-security/memory-safety

Is avoiding UB that important?

— https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

Is avoiding UB that important?

Does Rust help?

I took a look at this spreadsheet published a couple weeks ago...

Does Rust help?

I took a look at this spreadsheet published a couple weeks ago...

— https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz

Does Rust help?

https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz

I filled the language column and plotted...

Does Rust help?

I filled the language column and plotted...

Does Rust help?

