
2021  |  Non-Confidential

The never-ending saga 
of...
Control Dependencies
Linux Plumbers Conference, 2021

Will Deacon <will@kernel.org>



2021  |  Non-Confidential

Mega thread alert!

https://lore.kernel.org/r/YLn8dzbNwvqrqqp5@hirez.programming.kicks-ass.net

Thread overview: 122+ messages / expand[flat|nested] mbox.gz
2021-06-04 10:12 Peter Zijlstra [this message]

Let’s see if we can make any sense of it…
(also see my LPC session last year)

https://lore.kernel.org/r/YLn8dzbNwvqrqqp5@hirez.programming.kicks-ass.net


2021  |  Non-Confidential

Recap: What is a control dependency?

० The result of a read is used as input to a condition guarding 
a write
○ Ensures the write is ordered after the read (i.e. the 

write cannot be made visible to other CPUs until the 
condition has been resolved by the read)

○ Not all of the writes are annotated in practice
■ i.e. if there isn’t a data race

० Used instead of (stronger) acquire memory barriers on some 
fast paths in the Linux Kernel

० Can be broken by the compiler

० Can be broken by the CPU

x = READ_ONCE(*foo);
if (x > 42)

WRITE_ONCE(*bar, 1);

LDR X0, [Xfoo]
CMP X0, #42
B.LE 1f
MOV X1, #1
STR X1, [Xbar]

1:

● Read ⇒ write generally ordered 
by all CPU architectures

● Read ⇒ read control 
dependencies can often be 
reordered by hardware!



2021  |  Non-Confidential

“Nice control dependency you got here. Be a shame if 
anything happened to it.” -- Al Capone



2021  |  Non-Confidential

Breaking control dependencies: Mob boss #1

Compiler transformations

० Condition optimised away (evaluates to constant)

० Write occurs regardless of condition

० Conditional instructions
○ See later slide

० Speculative stores
○ Prevented by -fno-allow-store-data-races?

० Don’t really feel like “real” code examples…
○ But if this goes wrong, it will be subtle and 

un-debuggable
○ Syntactic vs semantic dependencies

० See memory-barriers.txt for more examples

#define MAX 1

x = READ_ONCE(*foo);
if (x % MAX == 0)

WRITE_ONCE(*bar, 1);

--->8

x = READ_ONCE(*foo);
if (x > 42) {

WRITE_ONCE(*bar, 1);
frob();

} else {
WRITE_ONCE(*bar, 1);
twiddle();

}



2021  |  Non-Confidential

Breaking control dependencies: Mob boss #2

CPU reordering

० Speculative stores
○ Gives rise to “thin-air” values!
○ Value prediction?

० Write occurs regardless of condition

० Conditional instructions

० Retrospective relaxation/clarification
○ Treading on thin ice

Languages Hardware



2021  |  Non-Confidential

Breaking control dependencies

CPU reordering on arm64

० Speculative stores
○ Thankfully doesn’t happen yet!

० Write occurs regardless of condition

० Conditional instructions
○ Look, no conditional branch!

० Retrospective relaxation/clarification
○ “Pointed dependencies”
○ https://lore.kernel.org/lkml/20210730172020.GA32396@knuck

les.cs.ucl.ac.uk/

x = READ_ONCE(*foo);
if (x > 42) {

WRITE_ONCE(*bar, 1);
} else {

WRITE_ONCE(*bar, 2);
}
WRITE_ONCE(*baz, 3);

--->8

LDR X0, [Xfoo]
MOV X1, #1
MOV X2, #2
MOV X3, #3

// X4 = X0 > 42 ? X1 : X2
CMP X0, #42
CSEL X4, X1, X2, GT

STR X4, [Xbar]
STR X3, [Xbaz]

https://lore.kernel.org/lkml/20210730172020.GA32396@knuckles.cs.ucl.ac.uk/
https://lore.kernel.org/lkml/20210730172020.GA32396@knuckles.cs.ucl.ac.uk/


2021  |  Non-Confidential

“You've got to ask yourself one question: 'Do I feel 
lucky about the compiler’s instruction selection 

pass?'” -- Dirty Harry



2021  |  Non-Confidential

Solution #1: volatile_if()

#define barrier() asm volatile(“” ::: “memory”)

#define volatile_if(x) if (({
_Bool __x = (x);
BUILD_BUG_ON(__builtin_constant_p(__x));
__x;

}) && ({ barrier(); 1; }))

० Force the compiler to emit a conditional branch
○ Is it robust? ‘x’ can still be optimised and relies (at least) on barrier() being opaque.
○ Better-off as a compiler __builtin?
○ Not amenable to barrier-based (i.e. smp_load_acquire()) implementation
○ Disallow ‘else’ clause to solve “Write occurs regardless of condition” case?

० Unclear impact on codegen



2021  |  Non-Confidential

Solution #2: Do nothing?

   #define volatile_if(x) if (x)

“I'd much rather have that kind of documentation, than have barriers that are magical for 
theoretical compiler issues that aren't real, and don't have any grounding in reality.

Without a real and valid example of how this could matter, this is just voodoo 
programming.”

-- Linus Torvalds

Q: Will the issues remain theoretical forever?



2021  |  Non-Confidential

Solution #3: Nuclear option

० Barrier instructions exist exactly for this purpose!
○ An easy way out of the problem?

० Per-architecture implementation

० Potential performance hit
○ Requires annotation of the load instruction heading the dependency

■ Allow the condition to be optimised however the compiler likes
○ Applies to all relaxed accesses, even when dependencies are unused

० This is currently my preference for arm64
○ Decreasing trust in robustness of dependency ordering
○ Further benchmarking on recent CPUs would provide an interesting data point



2021  |  Non-Confidential

Aside: A better barrier() macro

० Prevent CSE from eliminating barrier() statements
○ GCC performs string comparison on the asm volatile block?

० Allow finer-grained control of access types (load/store) ordered by the barrier()
○ Load ⇒ Load/Store (acquire-like)
○ Load ⇒ Load (rmb())
○ Load/Store ⇒ Store (release-like)
○ Store ⇒ Store (wmb())



2021  |  Non-Confidential

Thoughts?

Is this a real problem?

Is it worth solving?

Where/when/how should we solve it?

Thank you.



2021  |  Non-Confidential

Hardware

Recap: The sorry state of dependency ordering (LPC 2020)

CPU architectures guarantee that some dependencies 
enforce externally-visible ordering between memory 
accesses

Performance
Dependency ordering is generally cheaper than using explicit 
fences, particularly where the dependency exists naturally as 
part of the algorithm.

Linux

The kernel relies on address/data dependency ordering as a 
basis for RCU, but also control-dependency ordering to 
implement ring buffers and parts of the scheduler using 
volatile casts (READ_ONCE/WRITE_ONCE )

C Compiler
No high-performance implementations exist of 
memory_order_consume  and the kernel does not follow 
the C11 memory model anyway.


