

Report From The Standards
Committees

© 2021 Facebook Corporation

Paul E. McKenney, Facebook

Linux Plumbers Conference: Toolchains & Kernel MC, September 24, 2021

2

What Has Been Happening?

● Concurrency TS 2 (hazard pointers, RCU)
● Lifetime-end pointer zap
● Undefined behavior
● Relaxed guide to relaxed
● volatile_load and volatile_store
● Address/data dependency ordering

– Control dependencies covered in next session (“The
never-ending saga of control dependencies”)

3

Concurrency Technical Specification 2

4

Concurrency Technical Specification 2

● In June 2021, C++ plenary session requested a
Concurrency TS 2:
– Hazard pointers
– RCU: Adjusted to allow bare-bones implementations
– Asymmetric fences? (sys_membarrier())

● Maybe into C++26 or C++29

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1121r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1122r4.pdf

5

Concurrency TS 2: RCU Adjustments
● Naming (e.g., “rcu_synchronize()”)

● No rcu_head: Instead inherit from rcu_obj_base template class

● “Non-intrusive” retire() (AKA call_rcu() in kernel)
– Zero storage overhead, similar to single-argument kvfree_rcu() in kernel

● Callback invocation from retire()
– Allows use in constrained environments, as in without softirq or any RCU grace-

period kthread

● RAII readers: Automatic rcu_read_unlock() at end of scope
– There are mechanisms to allow explicit unlock

Shameless plug: https://cppcon.org/ presentation week of October 24 th with Maged Michael and Michael Wong.

6

Lifetime-End Pointer Zap

7

Lifetime-End Pointer Zap

● Important concurrent algorithms intentionally
access pointers to lifetime-ended objects
– LIFO Push (similar to Treiber’s stack ca. 1973)

● Single-element push and pop-all operations

– Hazard pointers
– Variants of sharded-locking methodology
– Any number of debugging schemes

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2414r1.pdf

8

LIFO Push Algorithm Outline
● Push a single element

– Allocate and initialize data fields

– Repeat until cmpxchg() succeeds:
● Initialize ->next pointer to top pointer
● Use cmpxchg() to point top to new element

● Pop entire stack
– Use xchg() to pop entire list, setting top to NULL

9

Initial State (Red == Concurrency)

Top

A

B

10

Push of C Begin: Allocate & Initialize

Top

A

B

Top

A

B

C

11

Intervening Pop-All Operation!!!

Top

A

B

Top

A

B

C

Top

C “Indeterminate” pointer (C) or
“Invalid” pointer (C++) to
lifetime-ended object

12

Push of A’ (Reuses Memory of A)

Top

A

B

Top

A

B

C

Top

C

Top

A’

C

“Zombie pointer” to newly
allocated type-compatible
object A’ that happens to
have the same address
that object A used to have.

13

Push of C Finally Completes

Top

A

B

Top

A

B

C

Top

C

Top

A’

C

Top

C

A’

14

Compilers Hate Zombie Pointers!!!

Top

A

B

Top

A

B

C

Top

C

Top

A’

C

Top

C

A’

The list’s bits are
just fine, but the
compiler hates this
zombie pointer!!!

15

Undefined Behavior

16

Undefined Behavior (UB)

● UB can back-propagate
● UB anywhere? Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5;

17

Array-Out-Of-Bounds UB

● UB can back-propagate
● UB anywhere? Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5; UB here might set “i” to 5...

18

Back-Propagated UB

● UB can back-propagate
● UB anywhere? Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5; UB here might set “i” to 5...

Back-propagate...

19

Self-Justifying UB (Anonymous, 2007)

● UB can back-propagate
● UB anywhere? Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5; UB here might set “i” to 5...

…back-propagate...

… thus justifying the UB!!!

Anonymous due to Chatham House rules. Eminent academic.

20

Self-Justifying UB (Anonymous, 2007)

● UB can back-propagate
● UB anywhere? Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5; UB here might set “i” to 5...

…back-propagate...

… thus justifying the UB!!!

“Cannot happen”, but no formal limitation justifying this.

21

Self-Justifying UB (Anonymous, 2007)

● UB can back-propagate
● UB anywhere? Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5; UB here might set “i” to 5...

…back-propagate...

… thus justifying the UB!!!

“Cannot happen”... Unless memory_ordered_relaxed concurrency is in play.

22

Relaxed Guide to Relaxed

23

Relaxed Guide to Relaxed

● C/C++ memory model allows OOTA values
– T1: x.store(y.load, mo_relaxed), mo_relaxed);

– T2: y.store(x.load, mo_relaxed), mo_relaxed);

– Even if x & y initially 0, could have x==y==42

● Why? C & C++ don’t respect dependencies!

24

Relaxed Guide to Relaxed

● C/C++ memory model allows OOTA values
– T1: x.store(y.load, mo_relaxed), mo_relaxed);

– T2: y.store(x.load, mo_relaxed), mo_relaxed);

– Even if x & y initially 0, could have x==y==42

● Why? C & C++ don’t respect dependencies!
– Random mo_relaxed programs problematic...

This can get quite ugly: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf

25

Relaxed Guide to Relaxed

● Random mo_relaxed programs problematic?
– Don’t ever use memory_order_relaxed!!!

26

Relaxed Guide to Relaxed

● Random mo_relaxed programs problematic?
– Don’t ever use memory_order_relaxed!!!

● Pity about the poor performance...

27

Relaxed Guide to Relaxed

● Random mo_relaxed programs problematic?
– Don’t ever use memory_order_relaxed!!!

● Pity about the poor performance...

– Instead, don’t randomly generate programs
involving memory_order_relaxed accesses!!!

28

Relaxed Guide to Relaxed

● Random mo_relaxed programs problematic?
– Don’t ever use memory_order_relaxed!!!

● Pity about the poor performance...

– Instead, don’t randomly generate programs
involving memory_order_relaxed accesses!!!

● Design programs using known-good patterns

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf

29

volatile_load<T> & volatile_store<T>

30

volatile_load<T> & volatile_store<T>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1382r1.pdf

● Maybe C++’s answer to READ_ONCE() and
WRITE_ONCE()

31

Address/Data Dependency Ordering

32

Address/Data Dependency Ordering

● Lots of electrons burned on this one…
– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0371r1.html

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0098r1.pdf

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0190r4.pdf

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0750r1.html

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0735r1.html

● Next step: Implementation (GSoC prototype)

33

Summary

34

Summary

● C11/C++11 got the concurrency ball rolling
● But these cannot be the final word
● The historical separation of the C/C++ and

concurrency communities has bitten us
extremely hard!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

