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What Has Been Happening?

● Concurrency TS 2 (hazard pointers, RCU)
● Lifetime-end pointer zap
● Undefined behavior
● Relaxed guide to relaxed
● volatile_load and volatile_store
● Address/data dependency ordering

– Control dependencies covered in next session (“The 
never-ending saga of control dependencies”)
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Concurrency Technical Specification 2
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Concurrency Technical Specification 2

● In June 2021, C++ plenary session requested a 
Concurrency TS 2:
– Hazard pointers
– RCU: Adjusted to allow bare-bones implementations
– Asymmetric fences? (sys_membarrier())

● Maybe into C++26 or C++29

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1121r3.pdf 
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1122r4.pdf  
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Concurrency TS 2: RCU Adjustments
● Naming (e.g., “rcu_synchronize()”)

● No rcu_head: Instead inherit from rcu_obj_base template class

● “Non-intrusive” retire() (AKA call_rcu() in kernel)
– Zero storage overhead, similar to single-argument kvfree_rcu() in kernel

● Callback invocation from retire()
– Allows use in constrained environments, as in without softirq or any RCU grace-

period kthread

● RAII readers: Automatic rcu_read_unlock() at end of scope
– There are mechanisms to allow explicit unlock

Shameless plug: https://cppcon.org/ presentation week of October 24 th with Maged Michael and Michael Wong.
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Lifetime-End Pointer Zap
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Lifetime-End Pointer Zap

● Important concurrent algorithms intentionally 
access pointers to lifetime-ended objects
– LIFO Push (similar to Treiber’s stack ca. 1973)

● Single-element push and pop-all operations

– Hazard pointers
– Variants of sharded-locking methodology
– Any number of debugging schemes

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf 
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2414r1.pdf 
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LIFO Push Algorithm Outline
● Push a single element

– Allocate and initialize data fields

– Repeat until cmpxchg() succeeds:
● Initialize ->next pointer to top pointer
● Use cmpxchg() to point top to new element

● Pop entire stack
– Use xchg() to pop entire list, setting top to NULL
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Initial State (Red == Concurrency)
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Push of C Begin: Allocate & Initialize
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Intervening Pop-All Operation!!!
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Push of A’ (Reuses Memory of A)
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allocated type-compatible
object A’ that happens to
have the same address
that object A used to have.
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Push of C Finally Completes
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Compilers Hate Zombie Pointers!!!
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The list’s bits are
just fine, but the
compiler hates this
zombie pointer!!!
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Undefined Behavior
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Undefined Behavior (UB)

● UB can back-propagate
● UB anywhere?  Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5;
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Array-Out-Of-Bounds UB

● UB can back-propagate
● UB anywhere?  Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5; UB here might set “i” to 5...
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Back-Propagated UB

● UB can back-propagate
● UB anywhere?  Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5; UB here might set “i” to 5...

Back-propagate...
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Self-Justifying UB (Anonymous, 2007)

● UB can back-propagate
● UB anywhere?  Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5; UB here might set “i” to 5...

…back-propagate...

… thus justifying the UB!!!

Anonymous due to Chatham House rules.  Eminent academic.
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Self-Justifying UB (Anonymous, 2007)

● UB can back-propagate
● UB anywhere?  Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5; UB here might set “i” to 5...

…back-propagate...

… thus justifying the UB!!!

“Cannot happen”, but no formal limitation justifying this.



21

Self-Justifying UB (Anonymous, 2007)

● UB can back-propagate
● UB anywhere?  Undefined everywhere!

int a[5];

int i = 3;

a[i] = 5; UB here might set “i” to 5...

…back-propagate...

… thus justifying the UB!!!

“Cannot happen”...  Unless memory_ordered_relaxed concurrency is in play.
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Relaxed Guide to Relaxed



23

Relaxed Guide to Relaxed

● C/C++ memory model allows OOTA values
– T1: x.store(y.load, mo_relaxed), mo_relaxed);

– T2: y.store(x.load, mo_relaxed), mo_relaxed);

– Even if x & y initially 0, could have x==y==42

● Why? C & C++ don’t respect dependencies!
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Relaxed Guide to Relaxed

● C/C++ memory model allows OOTA values
– T1: x.store(y.load, mo_relaxed), mo_relaxed);

– T2: y.store(x.load, mo_relaxed), mo_relaxed);

– Even if x & y initially 0, could have x==y==42

● Why? C & C++ don’t respect dependencies!
– Random mo_relaxed programs problematic...

This can get quite ugly: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf 
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Relaxed Guide to Relaxed

● Random mo_relaxed programs problematic?
– Don’t ever use memory_order_relaxed!!!
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Relaxed Guide to Relaxed

● Random mo_relaxed programs problematic?
– Don’t ever use memory_order_relaxed!!!

● Pity about the poor performance...



27

Relaxed Guide to Relaxed

● Random mo_relaxed programs problematic?
– Don’t ever use memory_order_relaxed!!!

● Pity about the poor performance...

– Instead, don’t randomly generate programs 
involving memory_order_relaxed accesses!!!
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Relaxed Guide to Relaxed

● Random mo_relaxed programs problematic?
– Don’t ever use memory_order_relaxed!!!

● Pity about the poor performance...

– Instead, don’t randomly generate programs 
involving memory_order_relaxed accesses!!!

● Design programs using known-good patterns

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf 
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volatile_load<T> & volatile_store<T>
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volatile_load<T> & volatile_store<T>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1382r1.pdf 

● Maybe C++’s answer to READ_ONCE() and 
WRITE_ONCE()
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Address/Data Dependency Ordering
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Address/Data Dependency Ordering

● Lots of electrons burned on this one…
– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0371r1.html

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0098r1.pdf

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0462r1.pdf

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0190r4.pdf

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0750r1.html

– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0735r1.html 

● Next step: Implementation (GSoC prototype)
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Summary
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Summary

● C11/C++11 got the concurrency ball rolling
● But these cannot be the final word
● The historical separation of the C/C++ and 

concurrency communities has bitten us 
extremely hard!
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