
2021 | Non-Confidential

Objtool for arm64
Linux Plumbers Conference, 2021

Will Deacon <will@kernel.org>

2021 | Non-Confidential

Objtool

What is it?

० A host program in tools/objtool/ that runs on each.o file during kernel build
○ Currently only supported/used by x86_64
○ Merged upstream in v4.6 (Feb 2016)

० General binary linter and patching utility
○ Can check and enforce invariants on the vmlinux
○ Helps to catch compiler and asm issues which would otherwise be missed

० Relies on control flow reconstruction
○ Can be sensitive to compiler optimisations
○ https://git.kernel.org/linus/3193c0836f20 disabled -fgcse for ___bpf_prog_run()!

https://git.kernel.org/linus/3193c0836f20

2021 | Non-Confidential

Objtool

What does it do for x86?

० Generation of ORC unwinding data
○ Lightweight alternative to DWARF; avoids needs for frame pointers (esp. in asm)

० Binary validation of:
○ Stack frames (relied upon for live-patching)
○ Unreachable instructions, retpoline, uaccess-enabled regions, ‘noinstr’ annotations

० Binary modification
○ Convert some __sanitizer_cov*() calls to NOPs
○ Generate mcount_loc section and convert __fentry calls to NOPs
○ Generate .static_call_sites section
○ Arch-specific branch patching (insertion of thunks etc).

2021 | Non-Confidential

“So I've started looking at what it would take to get
live patching going on ARM64 :-)” -- Ben

Herrenschmidt

Subject: [RFC PATCH v2 00/13] objtool: add base
support for arm64 -- Julien Thierry

2021 | Non-Confidential

Objtool
Why do we need it for arm64?

० We want reliable stack-tracing for same reasons as x86
○ Primarily for kernel live-patching
○ But also useful for unwinding across asynchronous boundaries (e.g. exceptions)

० Some of the x86 constraints do not apply:
○ No retpoline or static call table
○ Frame pointers are cheap

० If we enable objtool as optional binary linter then two things will inevitably happen:
○ It will find kernel-specific issues in toolchain output...
○ … and developers will push to enable objtool’s patching capabilities for arm64
○ We must treat failures to track control flow as objtool bugs not compiler bugs!

■ This is very challenging given the current design of objtool

० How feasible is it to fix these issues in the toolchains instead?
○ May not be considered bugs by the developers (likely kernel-specific requirements)
○ Both GCC and Clang are widely used for arm64 kernel builds

2021 | Non-Confidential

Control-flow analysis and -fgcse

if (cond_a) {
took_a=1;
...

}

...

if (!took_a) {
...

}

“Currently objtool will consider the path ‘cond_a && !took_a’ and can get into trouble because of
that.”

● No tracking of values or interpreter logic
● Do we really want to teach objtool about this?

2021 | Non-Confidential

Can the toolchain help us here?

ORC generation

Control flow analysis

Kernel-specific compilation flags

???

