The Rust
toolchain in
the kernel

Miguel Ojeda

ojeda@kernel.org

Which particular Rust toolchain is nheeded?

What is RUSTC_BOOTSTRAP?
Why do we need it?

Which components are required

to build, test, document...?

Compiler (rustc)
Standard library source (rust-src)
Bindings generator (bindgen)
Documentation generator (rustdoc)

Linter (clippy)

Formatter (rustfmt)

Build system (cargo)

Standard library binaries (rust-std)

Why is a bindings generator required?

Could you have the generated version of the
bindings in-tree?

Which parts of the standard library are required?

Do they need to be compiled in a particular way?

Which version of LLVM rustc requires?

How should distributions provide this toolchain®?

Should it be a separate one from the main Rust
packages they may otherwise have?

Should we provide pre-compiled toolchains

from kernel.org?

Which architectures are supported so far?

Which ones may be soon supported?

Supported architectures

arm (armvo6 only)
arme4

powerpc (ppc641le only)
riscv (riscv64 only)

x86 (x86_64 only)

See Documentation/rust/arch-support.rst

Supported architectures

arm (armvo6 only)
arme4d ...Co f’ar./
powerpc (ppc641le only) 32-bit and other restrictions should be easy to remove

riscv (I‘iSCV64 only) Kernel LLVM builds work for mips and s390

GCC codegen paths should open up more

x86 (x86_64 only)

See Documentation/rust/arch-support.rst

Are there alternative Rust compilers?

How advanced they are?

Rust codegen paths for the kernel

rustc_codegen_gcc rustc_codegen_1l1lvm Rust GCC

Already pasces Mai Expected in 1-2 years
ain one

most ruste teste (rough ectimate)

The Rust
toolchain in
the kernel

Miguel Ojeda

ojeda@kernel.org

Backup slides

@ Rust tree

library/

core
crate

H

alloc

crate

f\ Linux tree
:

-

(&

-~

rust/ include/
N 4
alloc kernel macros
crate crate crate
l J U N
- I
builtins exports helpers bindgen]
crate
4
Module

bindings
crate

gh Linux tree
drivers/ include/ ——

foo/ / kernel \ ’ bindgen]
crate

my_foo W foo bar (bindings
driver J Cafe subsystem subsystem Unsafe L crate
Abstractions

A)

//// Forbidden! ////

What else does Rust offer?

Documentation generator Unit & integration tests
Static analyzer C < Rust bindings generators
Linter

[ooling
Macro debugging
Formatter

IDE tooling
Great compiler error messages

UBSAN:-like interpreter
plus the usual friends: gdb, 11db, perf, valgrind...

GCC

$ aarch64-linux-gnu-

aarch64-linux-gnu-addr2line aarch64-linux-gnu-gcc-7
aarch64-linux-gnu-ar aarch64-linux-gnu—-gcc-ar
aarch64-linux-gnu-as aarch64-linux-gnu-gcc-ar-7
aarch64-linux-gnu-c++filt aarch64-linux-gnu-gcc—-nm
aarcho64-1linux—-gnu-cpp aarch64-linux-gnu-gcc—-nm-7
aarcho64-1linux-gnu-cpp-7 aarche64-linux-gnu-gcc-ranlib
aarch64-linux-gnu-dwp aarch64-linux-gnu-gcc-ranlib-7
aarch64-linux-gnu-elfedit aarch64-linux-gnu—-gcov

aarch64-linux-gnu-gcc aarch64-linux-gnu-gcov-7

-fomit-frame-pointer

—ftrapv

-mno-red-zone

-mcmodel=kernel

—-freg-struct-return
—-fpack-struct

-mregparm=num

Clang

General Cross-Compilation Options in Clang

Target Triple

The basic option is to define the target architecture. For that, use -target <triple=. If you don’t specify the target, CPU names won’t match (since
Clang assumes the host triple), and the compilation will go ahead, creating code for the host platform, which will break later on when
assembling or linking.

The triple has the general format <arch><sub>-<vendor>-<sys>-<abi>, where:
arch = x86_64, 1386, arm, thumb, mips, etc.
sub = for ex. on ARM: v5, vém, v7a, v7m, efc.
vendor = pc, apple, nvidia, ibm, etc.
sys = none, linux, win32, darwin, cuda, etc.

abi = eabi, gnu, android, macho, elf, etc.

The sub-architecture options are available for their own architectures, of course, so “x86v7a” doesn’t make sense. The vendor needs to be
specified only if there’s a relevant change, for instance between PC and Apple. Most of the time it can be omitted (and Unknown) will be
assumed, which sets the defaults for the specified architecture. The system name is generally the OS (linux, darwin), but could be special like
the bare-metal “none”.

When a parameter is not important, it can be omitted, or you can choose unknown and the defaults will be used. If you choose a parameter that
Clang doesn’t know, like blerg, it’ll ignore and assume unknown, Which is not always desired, so be careful.

Finally, the ABI option is something that will pick default CPU/FPU, define the specific behaviour of your code (PCS, extensions), and also
choose the correct library calls, etc.

-fomit-frame-pointer

—ftrapv

-mno-red-zone

-mcmodel=kernel

—-freg-struct-return
—-fpack-struct

-mregparm=num

rustc

Tier 1 with Host Tools

Tier 1 targets can be thought of as "guaranteed to work". The Rust project builds official binary
releases for each tier 1 target, and automated testing ensures that each tier 1 target builds and
passes tests after each change.

Tier 1 targets with host tools additionally support running tools like rustc and cargo natively on

the target, and automated testing ensures that tests pass for the host tools as well. This allows the
target to be used as a development platform, not just a compilation target. For the full requirements,
see Tier 1 with Host Tools in the Target Tier Policy.

All tier 1 targets with host tools support the full standard library.

target notes
aarch64-unknown-1linux-gnu ARM®64 Linux (kernel 4.2, glibc 2.17+) '
1686-pc-windows-gnu 32-bit MinGW (Windows 7+)
1686-pc—-windows-msvc 32-bit MSVC (Windows 7+)
i686-unknown-1inux-gnu 32-bit Linux (kernel 2.6.32+, glibc 2.11+)
x86_64-apple-darwin 64-bit macOS (10.7+, Lion+)
x86_64-pc-windows-gnu 64-bit MinGW (Windows 7+)
x86_64-pc-windows-msvc 64-bit MSVC (Windows 7+)

x86_64-unknown-Linux-gnu 64-bit Linux (kernel 2.6.32+, glibc 2.11+)

"arch": "x86 64",
"code-model": "kernel",

"cpu": "x86-64",

"data-layout": "e-m:e-p270:32:32-p271:32
"disable-redzone": true,
"eliminate-frame-pointer": false,

"emit-debug-gdb-scripts": false,

"env": "gnu",

"features": "-mmx, -sse,-sse2,-sse3,+soft
"linker-flavor": "gcc",

"linker-is-gnu": true,

"llvm-target": "x86 64-elf",
"max-atomic-width": 64,

"os": "none",

"panic-strategy": "abort",

:32-p272:64

-float",

:64-164:64-£80:...",

-Cpanic=abort

-Cno-redzone

-Cllvm-args=...

-Clink-args=...

Handling GCC, Clang and rustc at the same time

Generating the target rustc file via Makefile or some script

Generate a description via Makefile or some script, then transform

Getting compiler to accept that description format

bindgen

“automatically generates
Rust FFI bindings to C
(and some C++) libraries”

/// A safe wrapper for “f’.

/77

/// # Safety

/77

/// Any preconditions required to guarantee no UB.
fn £ abstraction() -> 132 {

unsafe { bindings::f () }

| ¥ 6/’140/:'0»9!’

fn main () {

println! ("{}", f abstraction());

(libclang J
p !
[foo.h bindgen —{ bindings.rs J—
J

P
[foo.c]— gcc / clang

{ bar.rs

—

#[repr (C)]

#[derive (Copy, Clone)]

pub struct rcu cblist {
pub head: *mut callback head,
pub tail: *mut *mut callback head,
pub len: c types::c long,

#[test]
fn bindgen test layout rcu cblist () {
assert eqg! (
::core::mem::size of::<rcu cblist>(),
24usize,

concat! ("Size of: ", stringify! (rcu cblist))

const ENERGY PERF BIAS PERFORMANCE : u32 = 0;

const ENERGY PERF BIAS BALANCE PERFORMANCE : u32 = 4;
const ENERGY PERF BIAS NORMAL : u32 = 6;

const ENERGY PERF BIAS BALANCE POWERSAVE : u32 = 8§;

(libclang
p !
[foo.h bindgen bindings.rs }—
J

[¥
[foo.c]— gcc / clang

J

[bar.rs

—

() 40pen + 0 Closed

(® Support Noreturn, [[noreturn]], _ attribute ((noreturn))
#2094 opened 24 days ago by ojeda

cement OIS

O Support unsafe_op_in_unsafe fn
#2063 opened on Jun 4 by ojeda

® C javadoc comments are not Markdown-escaped, triggering rustdoc warnings
#2057 opened on May 29 by ojeda

© Support for a GCC-based backend (enhancement
#1949 opened on Dec 20, 2020 by ojeda

#define div x64 (dividend, divisor) ({
BUILD BUG ON MSG (sizeof (divisor) > sizeof (u32),
"prefer divod x64");
__builtin choose expr (
1s signed type (typeof (dividend)),
div s64 ((dividend), (divisor)),
div u64 ((dividend), (divisor))):

})

#define div 64 (dividend, divisor)
_Generic ((divisor),
sb64: dive4d x64 ((dividend), (divisor)),
ucd: divod x64 ((dividend), (divisor)),
default: div x64 ((dividend), (divisor)))

= = = - -

= = -

__noreturn void rust helper BUG (void)

{
BUG () ;

#[test]
#[host]
fn test_that_runs_in_the_host() {
// Something that can be tested in the host.

#[test]

#[user]

fn test_that_runs_in_the_target’'s_userspace() {
// Something that must be tested in the target,
// but the test runs in userspace.

#[test]

#[kernel]

fn test_that_runs_in_the_target’s_kernelspace() {
// Something that must be tested in the target,
// but the test runs in kernelspace.

& Allcratess ~ Click or press ‘S’ to search, ‘?' for more options... ? ©

Crate std = 1.0.0 [-][src]

Crata std | (-] The Rust Standard Library

Version 1.55.0 (c8dfcfe04
2021-09-06) The Rust Standard Library is the foundation of portable Rust software, a set of minimal and battle-tested shared abstractions for the

broader Rust ecosystem. It offers core types, like Vec<T> and Option<T>, library-defined operations on language primitives,
standard macros, I/O and multithreading, among many other things.

[See all std's items]

std is available to all Rust crates by default. Therefore, the standard library can be accessed in use statements through the path
Primitive Types std,asin use std::env.

Modules . .
s How to read this documentation
Keywords If you already know the name of what you are looking for, the fastest way to find it is to use the search bar at the top of the page.
Crates Otherwise, you may want to jump to one of these useful sections:
e std::* modules
alloc ¢ Primitive types
core e Standard macros
proc_macro ¢ The Rust Prelude
std If this is your first time, the documentation for the standard library is written to be casually perused. Clicking on interesting things
i should generally lead you to interesting places. Still, there are important bits you don’t want to miss, so read on for a tour of the

standard library and its documentation!

Once you are familiar with the contents of the standard library you may begin to find the verbosity of the prose distracting. At this
stace in vour develonment vou mav want to nress the =1 button near the top of the pace to collanse it into a more skimmable

Crate kernel

[See all kernel's items J

Modules
Macros
Structs
Constants
Traits

Type Definitions

Crates

alloc
compiler_builtins
core

kernel

macros

All crates

Crate kernel &

[-]The kernel crate.

? ©

[-1lsrc]

This crate contains the kernel APIs that have been ported or wrapped for usage by Rust code in the kernel and is shared by all of

them.

In other words, all the rest of the Rust code in the kernel (e.g. kernel modules written in Rust) depends on core, alloc and this

crate.

If you need a kernel C API that is not ported or wrapped yet here, then do so first instead of bypassing this crate.

Modules

buffer
c_types
chrdev
file
file_operations
io_buffer
iov_iter
linked_list
miscdev
of

pages
platdev
prelude
nrint

Struct for writing to a pre-allocated buffer with the write! macro.

C types for the bindings.
Character devices.

Files and file descriptors.
File operations.

Buffers used in IO.

10 vector iterators.
Linked lists.
Miscellaneous devices.

Devicetree and Open Firmware abstractions.

Kernel page allocation and management.
Platform devices.
The kernel prelude.

Printino facilitiec

Conditional compilation

Rust code has access to conditional compilation based on the kernel config

#[cfg(CONFIG_X)] //
#[cfg(CONFIG_X="y")] //
#[cfg(CONFIG_X="m")] //
#[cfg(not(CONFIG_X))] //

"CONFIG_X"
"CONFIG_X"
"CONFIG_X"
"CONFIG_X"

is
1s
is
1s

enabled ('y or "m’)

enabled as a built-in ('y’)

enabled as a module
disabled

(‘'m*)

Coding guidelines

No direct access to C bindings Rust 2018 edition & idioms
No undocumented public APIs No unneeded panics
No implicit unsafe block No infallible allocations

Docs follows Rust standard library style
// SAFETY proofs for all unsafe blocks
Clippy linting enabled

Automatic formatting enforced

Coding guidelines

No direct access to C bindings Rust 2018 edition & idioms
No undocumented public APIs No unneeded panics
No implicit unsafe block No infallible allocations

Docs follows Rust standard library style
// SAFETY proofs for all unsafe blocks
Clippy linting enabled

Automatic formatting enforced
Aiming to be as ctrict as possible

