Preserved-over-kexec memory storage or PKRAM provides an API for saving memory pages of the currently executing kernel so that they may be restored after kexec into a new kernel. PKRAM provides a flexible way for doing this without requiring that the amount of memory used be a fixed size created a priori.

One use case for PKRAM is preserving guest memory and/or auxiliary supporting data (e.g. iommu data) across a kexec reboot of the host, and there is interest in extending it to work with emulated or real persistent memory.

Let’s discuss the current state of PKRAM, its limitations, and future direction.

I agree to abide by the anti-harassment policy
I agree

Primary author: YZNAGA, Anthony
Presenter: YZNAGA, Anthony
Session Classification: Performance and Scalability MC
Track Classification: Performance and Scalability MC