
Optimize Page Placement in 
Tiered Memory System

Huang, Ying



Agenda

• Memory Tiering

• Migrate in lieu of discard

• Promote with NUMA balancing

• TODOs

• Evaluation

• Alternatives



Tiered Memory System

• Originally, all RAM are DRAM

• Then, there are memory innovations
• PMEM (Persistent MEMory): cheap and slow

• HBM (High Bandwidth Memory): expensive and fast

• CXL-connected memory pool

• Multiple Memory Tiers System
• E.g., cache -> DRAM -> PMEM -> storage

DRAM

Cache

PMEM

Storage



Memory Tiering

Memory mode

▪Fully transparent to OS
▪”Good enough” performance 
for some use cases
▪Hardware controls placement
▪No placement control
▪Lowest complexity
▪Lowest barrier-to-adoption
▪DRAM Capacity lost
▪Volatile

Memory Tiering mode

▪Can be transparent to App
▪OS chooses default placement
▪Sys admin or app can override 
placement

▪Can replace App Direct mode 
except persistent

▪Low barrier-to-adoption
▪DRAM Capacity maintained
▪Volatile

App Direct mode

▪Fully non-transparent
▪Best performance
▪App chooses placement
▪Highest complexity
▪Highest barrier-to-adoption
▪DRAM Capacity maintained
▪Can be persistent

app

OS

DRAM

PMEM

iMCplacement

app

OS

DRAM PMEM

iMC

placementapp

OS

DRAM PMEM

iMC

placement



Optimizing Target

• Optimize page placement automatically
• Hot pages in DRAM, cold pages in PMEM

• Respond quickly enough to access pattern changing

• Balance between overhead and accuracy

• Manageable
• E.g., DRAM partition among workloads

• Flexible
• Applications can override default page placement

hot

DRAM PMEM

pages



Representation of Memory Tiers

• PMEM as separate NUMA nodes

• PMEM in MOVABLE zones

CPU

DRAM

PMEM CPU

DRAM

PMEM

Node 0 Node 1Node 2 Node 3

Socket 0 Socket 1



Migrate in lieu of discard

• LRU algorithm is good at identifying cold pages

• Potential page reclaiming algorithm improvement
• E.g., Multi-generational LRU algorithm

Active 
list

Inactive 
list

DRAM

Active 
list

Inactive 
list

PMEM

storage



Migrate in lieu of discard – TODOs

• Migrate unevictable pages

• Reclaimable/unmovable pages, e.g., inode/dentry cache

• Lose refault feedback

• Migrate hugetlbfs pages

• NUMA policy compliance



Promote with NUMA balancing - Background

• Scan page table, make pages inaccessible

• NUMA hint page fault on access

• Migrate pages to local node unless shared

CPU

DRAM

CPU

DRAM

Node 0 Node 1

Socket 0 Socket 1

Remote access

Migrate to local



Promote with NUMA balancing - Basic

• PMEM node is remote

• What if DRAM is full?

• Promote most recently accessed pages – hot?

CPU

DRAM PMEM

Node 0

Node 2PMEM access

Promote to DRAM



Promote with NUMA balancing – Continuously

• Wakeup kswapd of DRAM node if it’s full

• Add promote watermark for DRAM
• Demote/promote between high/promote watermark

• Balance between DRAM utilization and memory pressure

DRAM PMEM

Demote cold pages

Promote hot pages

Min watermark

Low watermark

High watermark

Promote watermark

DRAM zone

Demote/Promote



Promote with NUMA balancing – Hot

• Hint page fault latency = access time - scan time
• The lower the latency, the more possible the page is hot

• Record time: NUMA balancing bits in struct page flags

• Hot threshold
• Number of hot pages < promote rate limit

Time

Scan Access

Hint page fault latency



Promote Unmapped File Pages

• Access latency = access time - last access time
• The lower the latency, the more possible the page is hot

• Unified threshold adjustment and rate limit for mapped and 
unmapped pages



Thrashing Control

• Cold DRAM pages are as hot as hot PMEM pages

• Detect
• Page table scanning?

• Just demoted pages are promoted?

hot

DRAM PMEM pages



TODOs

• Upstream the basic promotion support

• Upstream the unmapped file page promotion

• Write bias

• Cgroup based DRAM partition



Play with it

• Experimental kernel
• https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/

• Build and configuration
• https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/tree/READM

E-tiering.txt?h=tiering-0.72

https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git/


Evaluation

• Test Machine
• 2-socket Cascade Lake CPU

• DRAM: 128GB

• Intel Optane DCPMM: 512GB (128GB * 4)

• Test Cases
• Pmbench

• FIO



Evaluation - Summary

Benchmark Kernel Score Normalized score

pmbench
Base 69125204.1 100.0

Optimized 183488435.7 265.4

Fio
Base 9151.5 100.0

Optimized 17675.4 193.1



Evaluation - Pmbench

Page temperature vs. normalized address

DRAM% vs. normalized address

• Access pattern: Gauss like distribution

• Simulate access pattern changing
• Allocate pages sequentially firstly



Evaluation – Pmbench - Animation

DRAM% vs. normalized address



Evaluation – Pmbench – Memory Throughput



Alternatives

• Scan Accessed bit of pages tables
• Avoid overhead of page fault

• User space solution
• More workload information available

• PMU (Performance Monitoring Unit) base
• Access addresses are available



Thanks!


