
Compact NUMA-aware Locks*

Alex Kogan
Oracle Labs
alex.kogan@oracle.com

joint work with Dave Dice (Oracle Labs)

LPC’21Copyright © 2021, Oracle and/or its affiliates

* patch series “Add NUMA-awareness to qspinlock” (https://lwn.net/Articles/856387)

https://lwn.net/Articles/856387

Protect access to the shared data

Remain the most popular synchronization technique
… and the topic of extensive research

Performance of parallel software often depends on the efficiency of the locks it employs

Locks: Quick Background

Copyright © 2021, Oracle and/or its affiliates2

Many flavors:
• exclusive / reader-writer
• spinning / blocking
• strictly fair / unfair / long-term fair
• …

The focus of this talk: exclusive, fair, spinning lock (aka qspinlock)

Evolve with the evolution of computing architectures
• we live in the era of multi-socket architectures with NUMA effects à

we need NUMA-aware locks

Locks: Quick Background

Copyright © 2021, Oracle and/or its affiliates3

Access by a core to a local memory or local
cache is faster that accesses to a remote
memory or remote cache

• known as Non-Uniform Memory Access (NUMA) effect

Keep the lock ownership within the same node
• decrease remote cache misses and inter-node communication
• for lock state access as well as data accessed in the critical section

• non-FIFO and unfair over the short term
• but usually preserve fairness over the longer term

Ø trade-off short-term fairness for better performance

NUMA-aware Locks

Copyright © 2021, Oracle and/or its affiliates4

CPU CPU

LLC

MEMORY

CPU CPU

LLC

MEMORY

Certain critical requirements
• compact
• must occupy at most 4 bytes

• fair (strictly fair/FIFO ?)
• perform well under both low and high contention

Keeps evolving
• test-set à ticket à MCS (slow path + fast path test-set)

Still not NUMA-aware!
• existing NUMA-aware locks tend to use space proportional to #nodes
• 100s bytes on a typical multi-node system

qspinlock in the Kernel

Copyright © 2021, Oracle and/or its affiliates5

ü Requires 4 bytes of memory
• like existing qspinlock
• or just one word (pointer) when implemented in user-space

ü Variant of a (NUMA-oblivious) MCS lock
• inherits its performance features
• local spinning, one atomic operation per acquisition, …

• requires minor changes to existing MCS implementations
• including qspinlock

ü Performance on-par with MCS under no contention, on-par with state-of-the-art hierarchical NUMA-
aware locks when contended
• up to ~3x throughput increase on a highly contended (4 node) system

CNA: Compact NUMA-aware Lock

Copyright © 2021, Oracle and/or its affiliates6

Queue-based spin locks, such as MCS, organize waiting threads into a queue

How Does CNA Do That?
(Or: What is the Trick?)

Copyright © 2021, Oracle and/or its affiliates7

1 0 0
tail

0

Queue-based spin locks, such as MCS, organize waiting threads into a queue

CNA uses two queues:
• primary: threads running on the same node

as the lock holder
• secondary: everyone else

How Does CNA Do That?
(Or: What is the Trick?)

Copyright © 2021, Oracle and/or its affiliates8

1 0 0
tail

0

0

tail

0

0

MCS lock holder checks whether the next waiter in the primary queue is running on the same NUMA node
• if not, it detaches that waiter from the primary queue and moves it to the tail of the secondary one

How Does CNA Do That?
(Or: What is the Trick?)

Copyright © 2021, Oracle and/or its affiliates9

MCS lock holder checks whether the next waiter in the primary queue is running on the same NUMA node
• if not, it detaches that waiter from the primary queue and moves it to the tail of the secondary one

How Does CNA Do That?
(Or: What is the Trick?)

Copyright © 2021, Oracle and/or its affiliates10

0

tail

00

tail

4

2

1

0
3 4

0
4

2 3

MCS lock holder checks whether the next waiter in the primary queue is running on the same NUMA node
• if not, it detaches that waiter from the primary queue and moves it to the tail of the secondary one
Ø gradually filter the primary queue, leaving only waiters running on the same (“preferred”) NUMA node

How Does CNA Do That?
(Or: What is the Trick?)

Copyright © 2021, Oracle and/or its affiliates11

0

tail

00

tail

4

2

1

0
3 4

0
4

2 3

To ensure long-term fairness, flush the secondary queue back into the primary one after a certain
period of time (or number) of “intra-node” handovers

After certain time has passed since the first thread has been moved to the secondary queue
• How much time?
• Tunable parameter, default value – 1ms
• Can be tweaked on the fly (module_param())

CNA trades FIFO / short-term fairness for better performance

Avoiding Starvation
(Or: What about Fairness / FIFO?)

Copyright © 2021, Oracle and/or its affiliates12

Kernel-space:
• Integrated into the slow path of qspinlock

User-space:
• Implemented CNA as a user-level library
• Compared to MCS, SOTA (hierarchical) NUMA-aware locks (cohort lock C-BO-MCS & HMCS lock)

HW:
4-socket x86 system (Intel Xeon E7-8895 v3 @ 2.60GHz), with 18 hyper-threaded cores per sockets

Performance Evaluation

Copyright © 2021, Oracle and/or its affiliates13

will-it-scale/open1_threads

14

LevelDB/readrandom

15

CNA accelerates contended user-land pthread locks by increasing throughput over the futex chains

More results

16

In the patch description and on the MLs, e.g.:

https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/HGVOCYDEE5KTLYPTAFBD2RXDQOCDPFUJ/

[locking/qspinlock] 0e8d8f4f12: fsmark.files_per_sec 213.9% improvement

https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/OUPS7MZ3GJA2XYWM52GMU7H7EI25IT37/

[locking/qspinlock] 0dd6d5b8c0: vm-scalability.throughput 102.9% improvement

https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/DNMEQPXJRQY2IKHZ3ERGRY6TUPWDTFUN/

[locking/qspinlock] 372cdd28b7: aim7.jobs-per-min 76.7% improvement

https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/HGVOCYDEE5KTLYPTAFBD2RXDQOCDPFUJ/
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/OUPS7MZ3GJA2XYWM52GMU7H7EI25IT37/
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/DNMEQPXJRQY2IKHZ3ERGRY6TUPWDTFUN/

CNA reduces remote cache misses while preserving long-term fairness

CNA achieves the best of both worlds:
ü as efficient as MCS at low contention

• but better at high contention by 40-200%
ü as performant as state-of-the-art NUMA-aware locks at high contention

• but its state requires only four bytes of memory

Kernel patch “Add NUMA-awareness to qspinlock” at https://lwn.net/Articles/856387

Summary

Copyright © 2021, Oracle and/or its affiliates17

https://lwn.net/Articles/856387

15 rounds of revisions
• big thank you to everyone who provided feedback, evaluated, etc.
• more feedback / evaluation results are welcome!

Do we really need this?
“Shouldn’t we be spending our time breaking [contended] locks [instead]?”

Probably. If you can rewrite your software and avoid lock contention, do so! But
• more efficient locks help us to “buy time” for rewrite
• sometimes, rewrite is not really an option (e.g., legacy software)

• some locks are inherently contended
• a “hot” file accessed by many clients concurrently

• by ignoring NUMA, we leave up to ~3x performance on the table

Patch Status

Copyright © 2021, Oracle and/or its affiliates18

”Compact NUMA-aware Locks” at ACM Eurosys’19: https://dl.acm.org/doi/10.1145/3302424.3303984

• Also available on arxiv: https://arxiv.org/abs/1810.05600

CNA patch (latest revision): https://lwn.net/Articles/856387

LWN article: https://lwn.net/Articles/852138

Some performance reports from kernel test robot:
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/HGVOCYDEE5KTLYPTAFBD2RXDQOCDPFUJ/
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/OUPS7MZ3GJA2XYWM52GMU7H7EI25IT37/
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/DNMEQPXJRQY2IKHZ3ERGRY6TUPWDTFUN/

Resources

Copyright © 2021, Oracle and/or its affiliates19

Thank you!
Questions?

alex.kogan@oracle.com

https://dl.acm.org/doi/10.1145/3302424.3303984
https://arxiv.org/abs/1810.05600
https://lwn.net/Articles/856387
https://lwn.net/Articles/852138
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/HGVOCYDEE5KTLYPTAFBD2RXDQOCDPFUJ/
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/OUPS7MZ3GJA2XYWM52GMU7H7EI25IT37/
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/DNMEQPXJRQY2IKHZ3ERGRY6TUPWDTFUN/

