ORACLE

Compact NUMA-aware Locks*

IR BN GOVEERW, 8

Alex Kogan
Oracle Labs

alex.kogan@oracle.com

joint work with Dave Dice (Oracle Labs)

I. 5 |
43'|
43
|

* patch series “Add NUMA-awareness to gspinlock” (https://lwn.net/Articles /856387)

Copyright © 2021, Oracle and/or its affiliates LPC'21 E

https://lwn.net/Articles/856387

Locks: Quick Background

Protect access to the shared data

Remain the most popular synchronization technique
... and the topic of extensive research

Performance of parallel software often depends on the efficiency of the locks it employs

2 Copyright © 2021, Oracle and/or its affiliates

Locks: Quick Background

Many flavors:
» exclusive / reader-writer
* spinning / blocking
« strictly fair / unfair / long-term fair

The focus of this talk: exclusive, fair, spinning lock (aka qspinlock)

Evolve with the evolution of computing architectures

e we live in the era of multi-socket architectures with NUMA effects =
we need NUMA-aware locks

3 Copyright © 2021, Oracle and/or its affiliates

NUMA-aware Locks

MEMORY MEMORY

Access by a core to a local memory or local
cache is faster that accesses to a remote
memory or remote cache

* known as Non-Uniform Memory Access (NUMA) effect CPU

Keep the lock ownership within the same node

« decrease remote cache misses and inter-node communication
« for lock state access as well as data accessed in the critical section

* non-FIFO and unfair over the short term
 but usually preserve fairness over the longer term

> trade-off short-term fairness for better performance

4 Copyright © 2021, Oracle and/or its affiliates

gspinlock in the Kernel

Certain critical requirements

e compact
¢ must occupy at most 4 bytes

« fair (strictly fair/FIFO ?)
 perform well under both low and high contention

Keeps evolving
* test-set 2 ticket > MCS (slow path + fast path test-set)

Still not NUMA-aware!

» existing NUMA-aware locks tend to use space proportional to #nodes
* 100s bytes on a typical multi-node system

5 Copyright © 2021, Oracle and/or its affiliates

CNA: Compact NUMA-aware Lock

v Requires 4 bytes of memory
* like existing gspinlock
» orjust one word (pointer) when implemented in user-space

v" Variant of a (NUMA-oblivious) MCS lock

* inherits its performance features
» local spinning, one atomic operation per acquisition, ...

* requires minor changes to existing MCS implementations
* including gspinlock

v Performance on-par with MCS under no contention, on-par with state-of-the-art hierarchical NUMA.-
aware locks when contended

» up to ~3x throughput increase on a highly contended (4 node) system

6 Copyright © 2021, Oracle and/or its affiliates

How Does CNA Do That?
(Or: What is the Trick?)

Queue-based spin locks, such as MCS, organize waiting threads into a queue

(,

-
)(I

)¢ Q

L g

7 Copyright © 2021, Oracle and/or its affiliates

How Does CNA Do That?
(Or: What is the Trick?)

Queue-based spin locks, such as MCS, organize waiting threads into a queue

-
€

L g

CNA uses two queues:

« primary: threads running on the same node
as the lock holder

- secondary: everyone else

8 Copyright © 2021, Oracle and/or its affiliates

How Does CNA Do That?
(Or: What is the Trick?)

MCS lock holder checks whether the next waiter in the primary queue is running on the same NUMA node
 if not, it detaches that waiter from the primary queue and moves it to the tail of the secondary one

9 Copyright © 2021, Oracle and/or its affiliates

How Does CNA Do That?
(Or: What is the Trick?)

MCS lock holder checks whether the next waiter in the primary queue is running on the same NUMA node
 if not, it detaches that waiter from the primary queue and moves it to the tail of the secondary one

-
€

10 Copyright © 2021, Oracle and/or its affiliates

How Does CNA Do That?
(Or: What is the Trick?)

MCS lock holder checks whether the next waiter in the primary queue is running on the same NUMA node
 if not, it detaches that waiter from the primary queue and moves it to the tail of the secondary one
» gradually filter the primary queue, leaving only waiters running on the same (“preferred”) NUMA node

-
€

11 Copyright © 2021, Oracle and/or its affiliates

Avoiding Starvation
(Or: What about Fairness / FIFO?)

To ensure long-term fairness, flush the secondary queue back into the primary one after a certain
period of time (or number) of “intra-node” handovers

After certain time has passed since the first thread has been moved to the secondary queue
 How much time?
« Tunable parameter, default value — Tms
« Can be tweaked on the fly (module_param())

CNA trades FIFO / short-term fairness for better performance

12 Copyright © 2021, Oracle and/or its affiliates

Performance Evaluation

Kernel-space:
* Integrated into the slow path of gspinlock

User-space:
* Implemented CNA as a user-level library
* Compared to MCS, SOTA (hierarchical) NUMA-aware locks (cohort lock C-BO-MCS & HMCS lock)

HW:
4-socket x86 system (Intel Xeon E7-8895 v3 @ 2.60GHz), with 18 hyper-threaded cores per sockets

13 Copyright © 2021, Oracle and/or its affiliates

will-it-scale/openi_threads

1.8 | .
1.6 P
1.4 /
/)]
S5 1.2
P
E% 1
0.8 |
e ///’ o stock
& CNA
0.4 \ J | | | |

1 2 4 8 16 32 72 142
threads

14

LevelDB/readrandom

CNA accelerates contended user-land pthread locks by increasing throughput over the futex chains

1? _ I. stock
. CNA
(V]
E |
= .
% 0.7 | . ’_N
06 =~
oo A
0.4
1 2 4 8 16 32 72 142

threads

15

More results

In the patch description and on the MLs, e.g.:

https://lists.01.org/hyperkitty/list/Ikp@lists.01.org/thread/HGVOCYDEESKTLYPTAFBD2RXDQOCDPEUJ/
[locking /gspinlock] 0e8d8f4f12: fsmark.files_per_sec 213.9% improvement

https://lists.01.org/hyperkitty/list/Ikp@lists.01.org/thread /OUPS7MZ3GIJA2XYWM52GMU7H7EI25IT37/
[locking /gspinlock] 0dd6d5b8c0: vm-scalability.throughput 102.9% improvement

https://lists.01.org/hyperkitty/list/Ikp@lists.01.org /thread/DNMEQPXJRQY2IKHZ3ERGRY6 TUPWDTFUN/
[locking /gspinlock] 372cdd28b7: aim7.jobs-per-min 76.7% improvement

16

https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/HGVOCYDEE5KTLYPTAFBD2RXDQOCDPFUJ/
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/OUPS7MZ3GJA2XYWM52GMU7H7EI25IT37/
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/DNMEQPXJRQY2IKHZ3ERGRY6TUPWDTFUN/

Summary

CNA reduces remote cache misses while preserving long-term fairness

CNA achieves the best of both worlds:

v" as efficient as MCS at low contention
 but better at high contention by 40-200%

v" as performant as state-of-the-art NUMA-aware locks at high contention
* but its state requires only four bytes of memory

Kernel patch “Add NUMA-awareness to gspinlock” at https://lwn.net/Articles /856387

17 Copyright © 2021, Oracle and/or its affiliates

https://lwn.net/Articles/856387

Patch Status

15 rounds of revisions
- big thank you to everyone who provided feedback, evaluated, etc.
« more feedback / evaluation results are welcome!

Do we really need this?
“Shouldn’'t we be spending our time breaking [contended] locks [instead]?”

Probably. If you can rewrite your software and avoid lock contention, do so! But
« more efficient locks help us to “buy time” for rewrite
« sometimes, rewrite is not really an option (e.g., legacy software)

« some locks are inherently contended
* a“hot” file accessed by many clients concurrently
* by ignoring NUMA, we leave up to ~3x performance on the table

18 Copyright © 2021, Oracle and/or its affiliates

Resources

"Compact NUMA-aware Locks” at ACM Eurosys’'19: https://dl.acm.org/doi/10.1145/3302424.3303984
» Also available on arxiv: https://arxiv.org/abs/1810.05600

CNA patch (latest revision): https://lwn.net /Articles /856387

LWN article: https://lwn.net /Articles /852138

Some performance reports from kernel test robot:

https://lists.01.org/hyperkitty/list/Ikp@lists.01.org /thread/HGVOCYDEESKTLYPTAFBD2RXDQOCDPFUJ/
https://lists.01.org/hyperkitty/list/Ikp@lists.01.org/thread /OUPS7MZ3GIJA2XYWM52GMU7H7EI25IT37/
https://lists.01.org/hyperkitty/list/Ikp@lists.01.org/thread/DNMEQPXJRQY2IKHZ3ERGRY6 TUPWDTFUN/

Thank you!
Questions?
alex.kogan@oracle.com

19 Copyright © 2021, Oracle and/or its affiliates

https://dl.acm.org/doi/10.1145/3302424.3303984
https://arxiv.org/abs/1810.05600
https://lwn.net/Articles/856387
https://lwn.net/Articles/852138
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/HGVOCYDEE5KTLYPTAFBD2RXDQOCDPFUJ/
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/OUPS7MZ3GJA2XYWM52GMU7H7EI25IT37/
https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/DNMEQPXJRQY2IKHZ3ERGRY6TUPWDTFUN/

