Google

Chrome OS

The kernel in the hands of
millions of users

September 2021

Alex Levin - levinale@google.com
Jesse Barnes - jsbarnes@google.com

Feel free to send CVs and questions

mailto:levinale@google.com
mailto:jsbarnes@google.com

Agenda

e ChromeOS kernel lingo -
o Rebase - forward port CHROMIUM patches to current tree
o Uprev - debug & deploy new kernel to devices
o Continuous rebase - keep CHROMIUM patches fresh against latest -rc, get test results

ChromeOS Test coverage for upstream rc kernel

Upstream agony

Upstream first

Partners (vendors, O[E|D]Ms and SoC manufacturers) and upstream

Google

Kernel in Chrome OS

e Active CROS kernel versions

o Multiple active (shipping) kernel version:
~/chromiumos/src/third_party/kernel/=» kernel Is -la
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 upstream
drwxr-x--- 26 levinale primarygroup 4096 Jun 1 15:14 v3.18
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 v4.14
drwxr-x--- 26 levinale primarygroup 4096 Jun 1 15:14 v4.14-gw
drwxr-x--- 27 levinale primarygroup 4096 Aug 2 11:45 v4.19
drwxr-x--- 27 levinale primarygroup 4096 Jun 1 15:14 v4.19-ht
drwxr-x--- 27 levinale primarygroup 4096 Jun 1 15:14 v4.19-manatee
drwxr-x--- 27 levinale primarygroup 4096 Aug 2 11:45v4.4
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 v5.10
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 v5.10-arcvm
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45v5.4
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 v5.4-arcvm
drwxr-x--- 26 levinale primarygroup 4096 Jun 1 15:15 v5.4-manatee

e Each of these kernel versions map to multiple platforms shipping with it
e The kernel version for a platform is selected at birth (or bringup).

Kernel Rebase

Once in a Blue moon (or every LTS release) we rebase to a new kernel (5.15 will
start soon).

The need to rebase comes from:

e New platforms are being developed
o Easier to cherrypick (sometimes hundreds of patches at a time) on top of the newer kernels

e Our desire to keep as close as possible to upstream

A rebase (or at least it used to be) is a process that involves multiple teams -
splitting the kernel into topic branches and each team resolves/debuggs its own

topic branch.

Google

Kernel Uprev

e Moving a platform from kernelX to KernelY is called an uprev.

e Atest driven activity mostly.
o Need to pass ChromeOS tests (and CTS).

e Have to deal with some upstream bugs & regressions
Often due to changes during upstreaming of vendor code
Trying to improve this with kernelci.org (seeding with lots of Chromebooks)
Still need better test coverage, both internally and externally
FDO Graphics ClI serves as a good model here
e Most time is spent looking for problems relative to the old kernel
o Fixing failing tests.
o Digging through feedback reports from users, trying to figure out of bugs are regressions
e Non-upstream stuff causes the most pain (surprise!)
o Graphics drivers, some pre-SoF sound stuff, etc.

Goal is update every device every other year with a new kernel. Two live versions
in the field, one in development. Google

o O O O

Uprevs are unpredictable

e Upreving a platform from 4.19 to 5.4 is fun! (isn't it?)
o In most cases the platform has breakage upstream in most components (e.g. audio, i2c,
performance, etc.).

e Hard to plan for - the depth of the rabbit hole is unclear before you dive.
o Becomes a resourcing/scheduling burden

e Alengthy uprev consumes a lot of lab equipment (2x on the testing capacity).

Continuous rebase and continuous testing

e To map the unexpected, rebase on top of every single RC
e Test every single RC to track for regressions

e Report breakage to ChromeOS teams

e Report regressions upstream(still in the works)

e Send patches upstream (e.g. 1,2,3)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v5.15-rc2&id=d53a6adfb553969809eb2b736a976ebb5146cd95
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v5.15-rc2&id=8d3c0c01cb2e36b2bf3c06a82b18b228d0c8f5d0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v5.15-rc2&id=7045465500e465b09f09d6e5bdc260a9f1aab97b

Report the failures (ideally automatic)

Internally we have scaled quite well - teams are looking at all the failures
(hundreds of bugs opened and resolved)

The upstream story needs more work - we are starting to explore how to best
integrate with upstream. Investing money & time in KernelCl as part of this.

ChromeQOS Upstream First (link)

e Upstream first: We aim to get all patches accepted upstream
o Upstreaming means sending patch to some mailing list, getting it reviewed there
o Maintainer then picks up the patch, puts it in a git tree, and later asks Linus to merge in main
tree.

o Most common types of patches:
m UPSTREAM: The commit was accepted upstream, and is available in a later kernel version.
e Must contain (cherry picked from commit 7c761b593e2c1dc6bc6c0c15ec338af1f00cabd7)
e We must have reasonable confidence that the commit ID won't change (if in Linus tree, surely, otherwise, it
depends). If unsure, use FROMGIT tag instead.
e Patch must apply cleanly, otherwise mark as BACKPORT, and indicate what changed.
m FROMLIST: The CL was posted upstream, and likely not in its final version.
e Must contain (am from https://patchwork.kernel.org/patch/9768741/)
e Do this when in a rush (we like boards to boot, bugs to be fixed). We can always revert the patch and pick
up a UPSTREAM later.
e Sometimes used for patches that have no chance of being accepted upstream in their current form (e.qg.
maintainer asks for refactoring, etc.)
m CHROMIUM: CL that have zero chances of being accepted upstream
e Chrome OS config options (more about that later)
e Graphics drivers for ARM (upstream does not like it when the userspace driver is closed source)

Googl
e Experiments for data gathering (e.g. early versions of MGLRU, core scheduling) oo

https://chromium.googlesource.com/chromiumos/docs/+/master/kernel_faq.md

Upstreaming agony

We want to upstream everything. It makes Linux better and our lives easier. However:

e High variability in maintainer responsiveness
o Some subsystems are really great
o Some armitecture maintainers are not as easy to work with
o Some subsystems are just stuck (e.g. memory management)

e Replies often come with “helpful” suggestions of radical product redesign
o E.g. preempt count passthrough for VMs to improve scheduling of guests

e Plus usual stuff, e.g. “oh sure we can apply this two liner... *after* you rewrite the
subsystem”
Wishlist:
e Consistent maintainer responsiveness and acceptance criteria
o A maintainer CoC or expectations doc?
e More data driven decision making (e.g. which benchmarks are generally agreed to
be important for each subsystem)

e More openness to experimentation
o How can we enable this?

Google

Partners and upstream

e Generally - no CHROMIUM is allowed

e But some cases are approved
o As atemporary workaround until the upstream story is well digested

e Actually landing FROMI[GIT|LIST] upstream

e Reverting temporary solutions and replacing them with upstream patches
o Tracked in bugs assigned to partners.

Google

Informational slides

Build & flash cros-kernel (link) (from our sdk)

e Build a kernel (e.g. for caroline)
O setup_board -board=caroline
O cros_workon-start --board=caroline chromeos-kernel-4_19
O emerge-caroline chromeos-kernel-4_19

e In case you want to build a whole chromium image:
o USE="pcserial tty_console_ttyS1" ./build_packages --board=caroline
o ./build_image -enable_serial="ttyS1,115200n8' --board=caroline --noenable_rootfs_verification
test

e Update the board with your custom kernel
O ./update_kernel.sh --remote <IP_ADDR>
e Flashthe image to a USB
O cros flash usb:// ../build/images/caroline/<latest>/chromiumos_test_image.bin

O Make sure to enable crossystem dev_boot_legacy=1 to boot from usb (crtl + U)
Google

https://chromium.googlesource.com/chromiumos/docs/+/master/developer_guide.md

Kernel in Chrome OS (link)

e Must flash test image for ssh and other (most) useful debug tools
O To make the roofs writable:

[| /usr/share/vboot/bin/make_dev_ssd.sh --remove_rootfs_verification --force

Google

https://chromium.googlesource.com/chromiumos/docs/+/master/developer_guide.md

Kernel in Chrome OS (link)

e Switch to terminal (tty)
O Once developer mode is enabled
B Esc+F3 (refresh)+power - takes to recovery screen
W cCtl+D
O Ctrl+Alt+F2 (forward arrow)

O Test image root default password is “test0000”

Google

https://chromium.googlesource.com/chromiumos/docs/+/master/developer_guide.md

Debugging in case stuff doesn’t work(great! link)

e Enable serial console
o USE="pcserial tty_console_ttyS0" ./build_packages —-board=caroline
o ./build_image --enable_serial="ttyS0,115200n8' --board=caroline --noenable_rootfs_verification
test

e Debugging using prints
o Add printks in strategic places (dev_[info/warn/err] or pr_[info/warn/err])
m pr_<level>: Slightly shorter than printk(KERN_<LEVEL>)
m dev_<level>: Standardized device information: dev_driver_string, then dev_name

m dev_dbg/pr_dbg in the kernel code can be enabled by setting #define DEBUG at the top of the source file (before
all includes).

o Adding dump_stack calls in places may also be very useful
o BUG/WARN provide nice backtraces.

Google

https://chromium.googlesource.com/chromiumos/docs/+/master/kernel_tips_and_tricks.md

Debugging in case stuff doesn’t work(great! link)

e kasan (Kernel Address sanitizer):
o Compile the kernel using USE=ubsan and USE=kasan

o Kasan is a dynamic memory error detector. It provides a fast and comprehensive solution for

finding use-after-free and out-of-bounds bugs.
m Uses compiler instrumentation for checking every memory access - expect to pay performance
o kasan prints a report in case of a bug found

m The header of the report describes what kind of bug happened and what kind of access caused it.

m Inthe last section the report shows memory state around the accessed address. For better understanding - read
the link.

e ubsan (Undefined Behavior Sanitizer):

o UBSAN uses compile-time instrumentation to catch undefined behavior (UB).

o The compiler inserts code that perform certain kinds of checks before operations that may
cause UB. If check fails (i.e. UB detected) __ubsan_handle_* function called to print error
message.

o Produces a report with the file/line that caused UB.

o Allows to sanitize per file/directory (limit the performance cost).

Google

https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/ubsan.html
https://chromium.googlesource.com/chromiumos/docs/+/master/kernel_tips_and_tricks.md

Debugging in case stuff doesn’t work(great! link)

e kmemleak
o Kmemleak provides a way of detecting possible kernel memory leaks
o A similar method is used by the Valgrind tool (memcheck --leak-check) to detect the memory

leaks in user-space
o Akernel thread scans the memory every 10 minutes (by default) and prints the number of new

unreferenced objects found.
e Testing your code for failure (failslub)
o The kernel has a debugfs API to Configure fault-injection capabilities behavior
o This helps test code when failure happens
o Allows to introduce new failures

e In case of an oops the chromebook will reboot but the logs of the oops can be

obtained
o cat/dev/pstore/console_rampoops

Google

https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html
https://www.kernel.org/doc/Documentation/fault-injection/fault-injection.txt
https://chromium.googlesource.com/chromiumos/docs/+/master/kernel_tips_and_tricks.md

