
Chrome OS
The kernel in the hands of
millions of users

September 2021

Alex Levin - levinale@google.com
Jesse Barnes - jsbarnes@google.com
Feel free to send CVs and questions

mailto:levinale@google.com
mailto:jsbarnes@google.com

Proprietary + Confidential

● ChromeOS kernel lingo -
○ Rebase - forward port CHROMIUM patches to current tree
○ Uprev - debug & deploy new kernel to devices
○ Continuous rebase - keep CHROMIUM patches fresh against latest -rc, get test results

● ChromeOS Test coverage for upstream rc kernel
● Upstream agony
● Upstream first
● Partners (vendors, O[E|D]Ms and SoC manufacturers) and upstream

Agenda

Proprietary + Confidential

 Kernel in Chrome OS

● Active CROS kernel versions
○ Multiple active (shipping) kernel version:

~/chromiumos/src/third_party/kernel/➜ kernel ls -la
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 upstream
drwxr-x--- 26 levinale primarygroup 4096 Jun 1 15:14 v3.18
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 v4.14
drwxr-x--- 26 levinale primarygroup 4096 Jun 1 15:14 v4.14-gw
drwxr-x--- 27 levinale primarygroup 4096 Aug 2 11:45 v4.19
drwxr-x--- 27 levinale primarygroup 4096 Jun 1 15:14 v4.19-ht
drwxr-x--- 27 levinale primarygroup 4096 Jun 1 15:14 v4.19-manatee
drwxr-x--- 27 levinale primarygroup 4096 Aug 2 11:45 v4.4
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 v5.10
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 v5.10-arcvm
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 v5.4
drwxr-x--- 26 levinale primarygroup 4096 Aug 2 11:45 v5.4-arcvm
drwxr-x--- 26 levinale primarygroup 4096 Jun 1 15:15 v5.4-manatee

● Each of these kernel versions map to multiple platforms shipping with it
● The kernel version for a platform is selected at birth (or bringup).

Proprietary + Confidential

Once in a Blue moon (or every LTS release) we rebase to a new kernel (5.15 will
start soon).

The need to rebase comes from:
● New platforms are being developed

○ Easier to cherrypick (sometimes hundreds of patches at a time) on top of the newer kernels

● Our desire to keep as close as possible to upstream

A rebase (or at least it used to be) is a process that involves multiple teams -
splitting the kernel into topic branches and each team resolves/debuggs its own
topic branch.

Kernel Rebase

Proprietary + Confidential

● Moving a platform from kernelX to KernelY is called an uprev.
● A test driven activity mostly.

○ Need to pass ChromeOS tests (and CTS).

● Have to deal with some upstream bugs & regressions
○ Often due to changes during upstreaming of vendor code
○ Trying to improve this with kernelci.org (seeding with lots of Chromebooks)
○ Still need better test coverage, both internally and externally
○ FDO Graphics CI serves as a good model here

● Most time is spent looking for problems relative to the old kernel
○ Fixing failing tests.
○ Digging through feedback reports from users, trying to figure out of bugs are regressions

● Non-upstream stuff causes the most pain (surprise!)
○ Graphics drivers, some pre-SoF sound stuff, etc.

Goal is update every device every other year with a new kernel. Two live versions
in the field, one in development.

Kernel Uprev

Proprietary + Confidential

● Upreving a platform from 4.19 to 5.4 is fun! (isn’t it?)
○ In most cases the platform has breakage upstream in most components (e.g. audio, i2c,

performance, etc.).

● Hard to plan for - the depth of the rabbit hole is unclear before you dive.
○ Becomes a resourcing/scheduling burden

● A lengthy uprev consumes a lot of lab equipment (2x on the testing capacity).

Uprevs are unpredictable

Proprietary + Confidential

● To map the unexpected, rebase on top of every single RC

● Test every single RC to track for regressions

● Report breakage to ChromeOS teams

● Report regressions upstream(still in the works)

● Send patches upstream (e.g. 1,2,3)

Continuous rebase and continuous testing

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v5.15-rc2&id=d53a6adfb553969809eb2b736a976ebb5146cd95
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v5.15-rc2&id=8d3c0c01cb2e36b2bf3c06a82b18b228d0c8f5d0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?h=v5.15-rc2&id=7045465500e465b09f09d6e5bdc260a9f1aab97b

Proprietary + Confidential

Internally we have scaled quite well - teams are looking at all the failures
(hundreds of bugs opened and resolved)

The upstream story needs more work - we are starting to explore how to best
integrate with upstream. Investing money & time in KernelCI as part of this.

Report the failures (ideally automatic)

Proprietary + Confidential

● Upstream first: We aim to get all patches accepted upstream

○ Upstreaming means sending patch to some mailing list, getting it reviewed there
○ Maintainer then picks up the patch, puts it in a git tree, and later asks Linus to merge in main

tree.
○ Most common types of patches:

■ UPSTREAM: The commit was accepted upstream, and is available in a later kernel version.
● Must contain (cherry picked from commit 7c761b593e2c1dc6bc6c0c15ec338af1f00cabd7)
● We must have reasonable confidence that the commit ID won't change (if in Linus tree, surely, otherwise, it

depends). If unsure, use FROMGIT tag instead.
● Patch must apply cleanly, otherwise mark as BACKPORT, and indicate what changed.

■ FROMLIST: The CL was posted upstream, and likely not in its final version.
● Must contain (am from https://patchwork.kernel.org/patch/9768741/)
● Do this when in a rush (we like boards to boot, bugs to be fixed). We can always revert the patch and pick

up a UPSTREAM later.
● Sometimes used for patches that have no chance of being accepted upstream in their current form (e.g.

maintainer asks for refactoring, etc.)
■ CHROMIUM: CL that have zero chances of being accepted upstream

● Chrome OS config options (more about that later)
● Graphics drivers for ARM (upstream does not like it when the userspace driver is closed source)
● Experiments for data gathering (e.g. early versions of MGLRU, core scheduling)

ChromeOS Upstream First (link)

https://chromium.googlesource.com/chromiumos/docs/+/master/kernel_faq.md

Proprietary + Confidential

We want to upstream everything. It makes Linux better and our lives easier. However:
● High variability in maintainer responsiveness

○ Some subsystems are really great
○ Some armitecture maintainers are not as easy to work with
○ Some subsystems are just stuck (e.g. memory management)

● Replies often come with “helpful” suggestions of radical product redesign
○ E.g. preempt count passthrough for VMs to improve scheduling of guests

● Plus usual stuff, e.g. “oh sure we can apply this two liner… *after* you rewrite the
subsystem”

Wishlist:
● Consistent maintainer responsiveness and acceptance criteria

○ A maintainer CoC or expectations doc?
● More data driven decision making (e.g. which benchmarks are generally agreed to

be important for each subsystem)
● More openness to experimentation

○ How can we enable this?

Upstreaming agony

Proprietary + Confidential

● Generally - no CHROMIUM is allowed
● But some cases are approved

○ As a temporary workaround until the upstream story is well digested

● Actually landing FROM[GIT|LIST] upstream
● Reverting temporary solutions and replacing them with upstream patches

○ Tracked in bugs assigned to partners.

Partners and upstream

Proprietary + Confidential

Proprietary + Confidential

Informational slides

Proprietary + Confidential

 Build & flash cros-kernel (link) (from our sdk)

● Build a kernel (e.g. for caroline)
○ setup_board --board=caroline

○ cros_workon-start --board=caroline chromeos-kernel-4_19

○ emerge-caroline chromeos-kernel-4_19

● In case you want to build a whole chromium image:
○ USE="pcserial tty_console_ttyS1" ./build_packages --board=caroline
○ ./build_image --enable_serial='ttyS1,115200n8' --board=caroline --noenable_rootfs_verification

test

● Update the board with your custom kernel
○ ./update_kernel.sh --remote <IP_ADDR>

● Flash the image to a USB
○ cros flash usb:// ../build/images/caroline/<latest>/chromiumos_test_image.bin

○ Make sure to enable crossystem dev_boot_legacy=1 to boot from usb (crtl + U)

https://chromium.googlesource.com/chromiumos/docs/+/master/developer_guide.md

Proprietary + Confidential

 Kernel in Chrome OS (link)

● Must flash test image for ssh and other (most) useful debug tools
○ To make the roofs writable:

■ /usr/share/vboot/bin/make_dev_ssd.sh --remove_rootfs_verification --force

https://chromium.googlesource.com/chromiumos/docs/+/master/developer_guide.md

Proprietary + Confidential

Kernel in Chrome OS (link)

● Switch to terminal (tty)
○ Once developer mode is enabled

■ Esc+F3 (refresh)+power - takes to recovery screen

■ Ctrl + D

○ Ctrl+Alt+F2 (forward arrow)

○ Test image root default password is “test0000”

https://chromium.googlesource.com/chromiumos/docs/+/master/developer_guide.md

Proprietary + Confidential

● Enable serial console
○ USE="pcserial tty_console_ttyS0" ./build_packages --board=caroline
○ ./build_image --enable_serial='ttyS0,115200n8' --board=caroline --noenable_rootfs_verification

test

● Debugging using prints
○ Add printks in strategic places (dev_[info/warn/err] or pr_[info/warn/err])

■ pr_<level>: Slightly shorter than printk(KERN_<LEVEL>)
■ dev_<level>: Standardized device information: dev_driver_string, then dev_name
■ dev_dbg/pr_dbg in the kernel code can be enabled by setting #define DEBUG at the top of the source file (before

all includes).
○ Adding dump_stack calls in places may also be very useful
○ BUG/WARN provide nice backtraces.

Debugging in case stuff doesn’t work(great! link)

https://chromium.googlesource.com/chromiumos/docs/+/master/kernel_tips_and_tricks.md

Proprietary + Confidential

● kasan (Kernel Address sanitizer):
○ Compile the kernel using USE=ubsan and USE=kasan
○ Kasan is a dynamic memory error detector. It provides a fast and comprehensive solution for

finding use-after-free and out-of-bounds bugs.
■ Uses compiler instrumentation for checking every memory access - expect to pay performance

○ kasan prints a report in case of a bug found
■ The header of the report describes what kind of bug happened and what kind of access caused it.
■ In the last section the report shows memory state around the accessed address. For better understanding - read

the link.

● ubsan (Undefined Behavior Sanitizer):
○ UBSAN uses compile-time instrumentation to catch undefined behavior (UB).
○ The compiler inserts code that perform certain kinds of checks before operations that may

cause UB. If check fails (i.e. UB detected) __ubsan_handle_* function called to print error
message.

○ Produces a report with the file/line that caused UB.
○ Allows to sanitize per file/directory (limit the performance cost).

Debugging in case stuff doesn’t work(great! link)

https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/ubsan.html
https://chromium.googlesource.com/chromiumos/docs/+/master/kernel_tips_and_tricks.md

Proprietary + Confidential

● kmemleak
○ Kmemleak provides a way of detecting possible kernel memory leaks
○ A similar method is used by the Valgrind tool (memcheck --leak-check) to detect the memory

leaks in user-space
○ A kernel thread scans the memory every 10 minutes (by default) and prints the number of new

unreferenced objects found.

● Testing your code for failure (failslub)
○ The kernel has a debugfs API to Configure fault-injection capabilities behavior
○ This helps test code when failure happens
○ Allows to introduce new failures

● In case of an oops the chromebook will reboot but the logs of the oops can be
obtained
○ cat /dev/pstore/console_rampoops

Debugging in case stuff doesn’t work(great! link)

https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html
https://www.kernel.org/doc/Documentation/fault-injection/fault-injection.txt
https://chromium.googlesource.com/chromiumos/docs/+/master/kernel_tips_and_tricks.md

