Self-healing Networking
with Flow Label

Alexander Azimov mitradir@yandex-team.ru

Dmitry Yakunin zeil@yandex-team.ru

mailto:mitradir@Yandex-team.ru
mailto:zeil@yandex-team.ru

Just a Top of Rack Switch (ToR)

Servers a

|
|
Il TOR]_
|

proto
Src_ip
hash| dst_ip @

src_port
dst_port

ToR + 2xPlanes

0o
OGRCING

ervers

|

|

[oo

(src_ip) @ @ @ S —spine;
hash

X —super spine;

ToR + 2xPlanes + ToR

0o
OGRCING

:: — < ON%D
o o~
() oZleR e

ToR + 4xPlanes + ToR

Servers Servers

|
|
| TOR1
|
|

(%22

~5

@ ToR,
~5

proto

src_ip
() @».«a
G G G

dst_port

Theory DC: Many-Many Paths

N_PLANES: Number of planes in DC;
N X SPINES: Number of super spines (X) in each plane;

* Inside ToR: 1
* Inside PoD: N_PLANES
* Between PoDs: N_PLANES x N_X SPINES

Real DC: Many-Many Paths

N_PLANES: Number of planes in DC; (8)
N _X_ SPINES: Number of super spines (X) in each plane; (32)

* |[nside ToR: 1
* Inside PoD: N_PLANES =8
 Between PoDs: N_PLANES x N_X_SPINES = 256

X411 is Broken

[
| |

RN

dedede

X411 is Broken: No link, No Problem

() A

OO O
|
|
II TOR]_ @ @ TORZ
| ’ ‘
proto ‘
Src_ip
hash @

X411 is Broken: Constant Loss

Unhappy TCP Flow

L
RTO S12 Rz~
IS Servers
Servers RN

| | SN | '
| | \\:\:\\ | |
\\:\\ I |
II II TORI \k TORZ | |
I | I |
proto
Src_ip
hash| dst_ip
src_port

dst_port

RTO & SYN RTO Timeouts

140

120

100

80

60

40

20

Timeout in Seconds

/

——————

1th retry

2th retry

3th retry 4th retry 5th retry 6th retry 7th retry

==SYN =—DATA

RTO = MAX(RTO_MIN, RTT)

Timeouts
RTO_MIN SYN_RTO
200ms 1s
Real RTT
<1lms

The Old Way: Services

Configure TCP options using sysctl;

Configure application timeouts;

TCP sessions reuse with software defined health checks;

None of these methods are properly evaluated;

THIS IS FINE.

The Old Way: NOC

The Old Way: NOC

e Outage!
e Detection (1-5 minutes);

e |solation (5-15 minutes);

Total: 5-20 minutes of service degradation.

From: Tom Herbert @ 2814-87-82 4:33 UTC (permalink / raw)
To: davem, netdev

Automatically generate flow labels for IPvE packets on transmit.
The flow label is computed based on skb _get hash. The flow label will

only automatically be set when it is zero otherwise (i.e. flow label
manager hasn't set one). This supports the transmit side functiconality
of RFC 6438.

Added an IPv6 sysctl auto flowlabels to enable/disable this behavior
system wide, and added IPV6 AUTOFLOWLABEL socket option to enable this

functionality per socket.

By default, auto flowlabels are disabled to avoid possible conflicts
with flow label manager, however if this feature proves useful we
may want to enable it by default.

It should also be noted that FreeBS5D has already implemented automatic
flow labels (including the sysctl and socket option). In FreeBSD,
automatic flow labels default to enabled.

From: Tom Herbert <tom@herbertland.com>

To: <davem@davemloft.net>, <netdevi@vger.kernel.org>

Cc: <kernel-team@fb.com>

Subject: [PATCH net-next 8/2] net: Initialize sk hash to random value and res
Date: Tue, 28 Jul 2815 16:82:04 -0760

Message-ID: <1438124526-2129341-1-git-send-email-tom@herbertland.com> (raw)

This patch set implements a common function to simply set sk _txhash to
a random number instead of going through the trouble to call flow
dissector. From dst negative advice we now reset the sk _txhash in hopes
of finding a better ECMP path through the network. Changing sk_txhash
affects:
- IPv6 flow label and UDP source port which affect ECMP in the network
- Local EMCP route selection (pending changes to use sk_txhash)

Tom Herbert (2):
net: Set sk_txhash from a random number
net: Recompute sk _txhash on negative routing advice

From: Lawrence Brakmoc <brakmo@fb.com:
To: netdev <netdev@vger.kernel.org:>
Cc: Kernel Team <kernel-team@fb.com>,
Eric Dumazet <eric.dumazetf@gmail.com>,
Yuchung Cheng <ycheng@google.com>,
Neal Cardwell <ncardwell@@google.com>
Subject: [PATCH w4 net-next] tcp: Change txhash on every SYN and RTO retransmii
Date: Tue, 27 5ep 2816 19:83:37 -8788
Message-ID: <20168928028337.3057238-1-brakmo@fb.com> (raw)

The current code changes txhash (flowlables) on every retransmitted
SYN/ACK, but only after the 2nd retransmitted SYN and only after
tcp _retriesl RTO retransmits.

With this patch:
1) txhash is changed with every SYN retransmits
2) txhash is changed with every RTO.

The result is that we can start re-routing around failed (or very
congested paths) as soon as possible. Otherwise application health
checks may fail and the connection may be terminated before we start
to change txhash.

vd: Removed sysctl, txhash is changed for all RTOs
w3: Removed text savine default wvalue of swsetl s 8 (1t 1s 1686%

From: Yuchung Cheng <ycheng@google.com>
To: davem@davemloft.net, edumazetfigoogle.com
Cc: netdevi@vger.kernel.org, ncardwell@google.com,
Yuchung Cheng <ycheng@google.com>
Subject: [PATCH net-next] tcp: change IPv6 flow-label upon receiving spurious retransmission
Date: Wed, 29 Aug 2018 14:53:56 -8786 [thread overwview]
Message-ID: <20188829215356.235336-1-ycheng@google.com> (raw)

Currently a Linux IPv6 TCP sender will change the flow label upon
timeouts to potentially steer away from a data path that has gone
bad. However this does not help if the problem is on the ACK path
and the data path is healthy. In this case the receiver is likely
to receive repeated spurious retransmission because the sender
couldn't get the ACKs in time and has recurring timeouts.

This patch adds another feature to mitigate this problem. It
leverages the DSACK states in the receiver to change the flow
label of the ACKs to speculatively re-route the ACK packets.

In order to allow triggering on the second consecutive spurious
RTO, the receiver changes the flow label upon sending a second
consecutive DSACK for a seguence number below RCV.NXT.

TCP RTO & skb->hash

IP6 Flow Label

GRE Encap: KEY

RTO » skb->hash

UDP Encap: SRC Port

IP6 Ecnap: Flow Label

net.ipvb.auto flowlabels

0: automatic flow labels are completely disabled

1: automatic flow labels are enabled by default, they can be disabled
on a per socket basis using the IPV6_ AUTOFLOWLABEL socket option

2: automatic flow labels are allowed, they may be enabled on a per
socket basis using the IPV6_AUTOFLOWLABEL socket option

3: automatic flow labels are enabled and enforced, they cannot be
disabled by the socket option

Default: 1

Unhappy TCP Flow Becomes Happier

|
|
IITR
|

has

h

/’”p\

dst_ip

flwlbl

RTO

()

OBNOERO,

4
~
~
~
~
~
~
~
~
~
~
~
~
\\
~

TOR2

How to Reduce RTO Timeouts?

ip route get ADDRESS [from ADDRESS iif STRING | [oif STRING | [tos TOS |
ip route { add | del | change | append | replace | monitor } ROUTE

SELECTOR := [root PREFIX | | match PREFIX | [exact PREFIX | [table TABLE ID][proto RTPROTO] [
type TYPE] [scope SCOPE |

ROUTE := NODE_SPEC [INFO_SPEC]

NODE SPEC := [TYPE | PREFIX [tos TOS] [table TABLE ID | [proto RTPROTO] [scope SCOPE | |
metric METRIC |

INFO_SPEC := NH OPTIONS FLAGS [nexthop NVH] ...

NH := [via ADDRESS] [dev STRING] [weight NUMBER] NHFLAGS

OPTIONS := FLAGS [mtu NUMBER] [advmss NUMBER | [rtt TIME] [rttvar TIME 1 [window NUMBER
] [ewnd NUMBER] [initcwnd NUMBER | [ssthresh REALM | [realms REALM ||| rto_min TIME |||

initrwnd NUMBER |

SYN RTO is
Different

/* Check for TIMEOUT INIT operation and IPv6 addresses */
if (op == BPF_SOCK OPS_TIMEOUT INIT &%
skops->family == AF_INET6) -

/* If the first 5.5 bytes of the IPvé6 address are the same
* then both hosts are in the same datacenter
* 50 use an RTO of 1éms
*/
1t (skops->local _ipe[@]| == skops->remote_ipe|[@]| &&
(bpf_ntohl(skops->local ip6[1]) & exfffesese) ==
(bpf _ntohl(skops->remote_ip6[1]) & exfffeesee))
rv = 10;

Changing SYN RTO https://elixir.bootlin.com/linux/latest/source/samples/bpf/tcp synrto kern.c

https://elixir.bootlin.com/linux/latest/source/samples/bpf/tcp_synrto_kern.c

Evaluation: Without Flow Label

75%

One of four ToR uplinks drops packets, significant service degradation

Fvaluation: Flow Label + eBPF

75%

1357 1358 13:59 1400 1401 1402 1403 1404

One of four ToR uplink drops packets, no effect on the service!

Selt-healing Datacenter: Cookbook

* Does it scale? Yes!

* Does it have many paths? Yes!

* Does it have fault tolerance? Use IPv6! Use flow label!
* How do | change RTO? eBPF is the answer!

 Without documentation!

Theory Internet:
Many-Many Paths

Multihomed at the edge;

Multiple connections
between peers;

Multiple connection with
upstreams;

Real Internet: Many-Many Paths

Average number of best paths: 3.8 _

Maximum number of best paths: 44

>60% of prefixes have more then 1 path

A Real Outage

Thursday, Jul 22, 07:58:15
{label="26", peer_link="neun@ae10.161 (ER-Telecom 50GE@M9 %peer’)"}: 0.9680123070394143 ﬂM
® {label="44", peer_link="neun@ae&9.0 (Rostelecom 200CEEM9 %peers)"}. O
{label="922", peer_link="aurora@ae0.5 (ER-Telecom 40GE@SPBBM18 %peer®)'}. 1
® {label="4237", peer_link="dante@ael1.162 (ER-Telecom?2 SO0GEEMY %peer¥)"}: 0.9819061844170086
» {label="83950", peer_link="styri@ae89.0 (Rostelecom 200GE@5TD %peer%)"}: 0.024713796940126393

—___IT'S ANANYGAST

RTO & Anycast

SrcIP 1 Dst IP 2 FL=X1
Src Port 1 | Dst Port 2
Ack=A Seq=S
Anycast IP
Anycast IP

TCP Proxy 1

TCP Proxy 2

RTO & Anycast

RTO

®

TCP Proxy 1
Anycast IP

| Anycast IP
» D D 0
SrclP 1 Dst IP 2 FL=X2
Src Port 1 | Dst Port 2
Ack=A Seqg=S

SYN RTO & Anycast

SrcIP1 DstIP 2 FL=X1
Src Port 1 | Dst Port 2
Ack=0 Seq=S1

g TCP Proxy 1
Anycast IP
SYN
Anycast IP
TCP Proxy 2

[

SYN RTO & Anycast

SrcIP 2 DstIP 1 FL=Y1
Src Port 2 | DstPort 1
Ack=S1+1 Seq=S2
SYN/ACK

Anycast IP
TCP Proxy 2

SYN RTO & Anycast

TCP Proxy 1
Anycast IP

| Anycast IP

SYN

SrclIP 1 Dst IP 2 FL=X2
Src Port 1 | Dst Port 2
Ack=0 Seq=S1

SYN RTO & Anycast

a A

Anycast IP

Anycast IP

SrcIP 2 DstiIP 1 FL=Y1
Src Port 2 | Dst Port 1
Ack=S1+1 Seq=S2
SYN/ACK
SYN/ACK
SrcIP 2 DstiIP 1 FL=Z1
Src Port2 | DstPortl
Ack=S1+1 Seq=S3

TCP Proxy 1

TCP Proxy 2

SYN RTO & Anycast

TCP Proxy 1
Anycast IP

ACK
| Anycast IP

SrclIP 1 DstIP 2 FL=X2
Src Port 1 Dst Port 2
Ack=S2+1 | Seq=S1+1

Temporary Workaround

switch (skops->op) {
case BPF_SOCK_OPS_TIMEOUT_INIT:
rv = get_rto(skops->remote_ipé);
break;
case BPF_SOCK_OPS_TCP_CONNECT_CB:
rv = bpf_sock_ops_cb_flags_set(skops, BPF_SOCK_OPS_RTO_CB_FLAG);
skops->sk_txhash = 0; // force flow label as fixed hash from 5-tuple
break;
case BPF_SOCK_OPS_RTO_CB:
it (!is_l4_addr(skops->remote_ipé))
skops->sk_txhash = bpf_get_prandom_u32(); // randomize flow Label
break;
default:
break;

SRv6

Toward Correct Solution

* Holy war against ‘state’ at anycast services (L4 balancers!);
* Changing TCP behavior to safe mode;

* Keeping the knobs, we love knobs!

Flow Label: Safe Mode

Client — sends SYN, Server — responds with SYN&ACK

* In case of SYN RTO or RTO events Server SHOULD recalculate its TCP
socket hash, thus change Flow Label. This behavior MAY be switched
on by default;

* In case of SYN_RTO or RTO events Client MAY recalculate its TCP
socket hash, thus change Flow Label. This behavior MUST be switched
off by default;

From: Tom Herbert <tom@herbertland.com>

To: netdevi@vger.kernel.org, davem@davemloft.net, brakmo@fb.com,
ychenggoogle.com, eric.dumazet@gmail.com, a.e.azimovi@gmail.com

Cc: Tom Herbert <tom@herbertland.com:

Subject: [RFC PATCH net-next 8/3] txhash: Make hash rethink configurable

Date: Mon, 9 Aug 2821 11:53:11 -6766 [thread overview]

Message-ID: <20210809185314.38187-1-tom@herbertland.com> (raw)

Alexander Azimov performed some nice analysis of the feature in Linux
stack where the IPv6 flow label is changed when the stack detects a
connection is failing. The idea of the algorithm is to try to find a
better path. His reults are guite impressive, and show that this form
of source routing can work effectively.

Alex raised an issue in that if the serwver endpoint is an IP anycast
address, the connection might break if the flow label changes routing
of packets on the connection. Anycast is known to be susceptible to
route changes, not just those caused be flow label. The concern is that
flow label modulation might increases the chances that anycast
connections might break, especially if the rethink occurs after just
one RTO which is the current behavior.

This patch set makes the rethink behavior granular and configurable.

It allows control of when to do the hash rethink: upon negative advice,
at RTO in SYMN state, at RTO when not in SYN state. The behavior can

be configured by sysctl and by a socket option.

This patch set the defautl rethink behavior to be to do_a rethink only

on negative advice. This is reverts back to the original behavior of
the hash rethink mechanism. This less aggressive with the intent of
mitigating potentail breakages when anycast addresses are present.
For those users that are benefitting from changing the hash at the
first RTO, they would retain that behavior by setting the sysctl.

TCP
Selt-healing Da nter: Cookbook

Flow label provides is a way to ‘jump’ from a failing path;

Already works in controlled environment;

Can disrupt TCP connection with stateful anycast services;

We need to change Linux defaults!

This time we need to document it!

