
eBPF in CPU Scheduler
Hao Luo <haoluo@google.com>
Barret Rhoden <brho@google.com>

1

mailto:haoluo@google.com
mailto:brho@google.com

Agenda

● Scheduling latency profiling
● Forced idle time accounting in core scheduling
● Using BPF to accelerate the ghOSt kernel scheduler

2

Scheduling Latency Profiling

3

Profile scheduling latencies

● Tracing programs attached to sched tracepoints
○ Approach similar to runqslower

■ Tool from Bpf Compiler Collection (BCC)
■ Trace long process scheduling delays

○ Attach points
■ sched_switch
■ sched_wakeup

● What’s profiled
○ Queueing delays: Time spent on waiting in run queues
○ Oncpu time: Time when using cpu
○ Offcpu time: Time scheduled off cpu

Cgroup-oriented profiling

● Queueing delay broken down into two parts
○ Wait time when a thread from the same cgroup is using the cpu
○ Wait time when a thread from another cgroup is using the cpu

● Identify starvations due to insufficient cpu shares

Report as distributions

● Profiled stats are organized in histograms
● Allow user configuration

○ Adjust bucket bounds
○ Reset values

● Service level indicator (SLI) for node management agent

Wins by using BPF for profiling

● Flexibility
○ Allow making changes easily and swiftly from userspace

● No kernel dependencies
○ Google kernel team adopts upstream-first approach.
○ Try to minimize the kernel patches carried internally.

7

Take away

● Cgroup-oriented profiling tool
○ Profile for jobs rather than threads
○ Differentiate types of starvations

● Reports distribution and allow customization
○ More insights
○ Better usability

Forced Idle Time Accounting

9

Core scheduling

● Cross-HT attack
○ Involves attacker and victim running on different Hyper Threads of the same core.
○ Example: L1TF and MDS

● Core scheduling
○ Mitigation for some cross-HT attacks
○ Ensure only tasks in a user-designated trusted group can share a core (example followed)
○ Expected better performance, compared to the option of disabling HT

10

Core scheduling

Core scheduling isolates trusted and
untrusted tasks’ execution.

When running untrusted task, the sibling
cpu either

1. runs a task from the same
untrusted group.

Or

2. forced idle.

Forced idle time

● Correct accounting of resource consumption requires attributing forced idle
time to the untrusted group.

○ Before, reported cpu usage = real cpu usage
○ After, reported cpu usage = real cpu usage + forced idle time

● Why
○ Good indicator of core scheduling’s efficiency.
○ Opportunity cost of running untrusted tasks.

Measure forced idle time

● No upstream solution exists yet.
○ Challenging scenarios

■ How about >2 HT siblings?

● Using BPF
○ Provides a fast and flexible way to measure forced idle time.
○ Signal for tuning scheduling happening at userspace.

BPF Solution

● Tracing programs attached to sched tracepoints
○ Attach points

■ sched_switch
■ sched_wakeup

○ Attach points are within core scheduling’s critical section.
■ Not concerned about race between HT siblings.

Sibling HT’s state

Detecting forced idle requires us to know whether the sibling HT is idle.

● Read from sibling_rq->curr
● Required to access sibling HT’s runqueue within BPF programs

Ksyms

In BPF program, one can declare a symbol as a ksym. If kernel has exported a
global symbol of the same name, one can read the exported kernel symbol via the
ksym (example next page).

● Libbpf reads the symbol’s kernel address from kallsyms.
● Kernel BTF is needed if wants to direct dereference the symbol.
● BPF verifier makes sure the access is safe.

Finding whether the sibling HT is idle

17

Algorithm

At context switch, perform the following operations (SMT=2 only),

1. Take timestamp for entering forced idle, if
○ (1) sibling_rq->curr is idle and (2) context switch to untrusted task
○ (1) self is running untrusted task and (2) sibling switches to idle

2. Take timestamp for exiting forced idle, if
○ Case I

■ (1) sibling_rq->curr is untrusted task and (2) context switch from idle
○ Case II

■ (1) sibling_rq->curr is idle and (2) context switch from untrusted task

3. Charge forced idle time
○ If case I, charge the time to sibling_rq->curr
○ If case II, charge the time to current

Take away

● Implementing sched stats using BPF is a promising idea.

● The ability to read per-cpu variables within BPF programs enables many
sched BPF applications.

○ Sched uses per-cpu variable extensively.

19

ghOSt + BPF

Using BPF to accelerate ghOSt

20

● Kernel scheduler class, below CFS in priority
● Scheduling decisions made in userspace by an agent process
● Kernel sends messages to the agent: “task X blocked on cpu 6”
● Agent issues transactions to the kernel: “run task X on cpu 12”

What is ghOSt?

User
space

Transactions

Thread/CPU Messages
ghOSt agents

CPU scheduling
decisions

Kernel

Workload

Optional scheduling hints

Kernel
space

ghOSt
scheduling class

21

● Workload-specific scheduling policies
○ Different policies for hosting virtual machines versus running search engines
○ Agent-to-application interface is independent of the kernel ABI

● Update the scheduling policy independently from a kernel rollout
● More details: ghOSt: Fast & Flexible User Space Delegation of Linux Scheduling (Netdev 0x15 (2021))

Why ghOSt?

22

https://netdevconf.info/0x15/session.html?ghOSt:-Fast-&-Flexible-User-Space-Delegation-of-Linux-Scheduling

● Both are through shared memory, plus a “poke”
● Messages: from the kernel to the agent:

○ Ring buffer for the payload
○ Wake an agent on a particular cpu (not necessarily where the event occurred)

● Transactions: from the agent to the kernel
○ Per-cpu array of struct ghost_txn

■ GTID (PID), cpu, txn_state, task_barrier, agent_barrier, run_flags, commit_flags, commit_time, cpu_seqnum, sync_group_owner

○ Syscall to ask the kernel to look at specific transaction requests
○ Instructs pick_next_task_ghost() to run a particular task next: called the latched task

Messages and Transactions

23

● Per-cpu scheduling: an agent task on each cpu schedules its cpu
● Global scheduling: an agent task on one cpu schedules all cpus
● Hybrid: switch between per-cpu and global models

There’s an agent task on every cpu; userspace determines which do what.

Various Multicore Scheduler Styles

24

● Typical global agent loop (spinning):
○ Handle messages
○ Schedule runnable tasks on available cpus
○ Fancy policy stuff: preempt low priority tasks with higher priority tasks

● On a large machine (112 cpus), the loop can take a while
○ Workload dependent: how many wakeups per second
○ Scheduling policy dependent: complex policy may take a while to compute

● On average, 30-60us…
○ … is the average amount of time until the agent responds to a message
○ … is the average amount of time a cpu sits idle before the agent schedules it

● That’s way too slow: every time a task blocks, we waste 30us?!?!

Global Scheduling Woes

25

Latency of a CPU going Idle until a task is Latched:

--

 usec : count distribution

 0 -> 1 : 0 | |

 2 -> 3 : 3 | |

 4 -> 7 : 98 | |

 8 -> 15 : 266 | |

 16 -> 31 : 2784 | |

 32 -> 63 : 283485 |************ |

 64 -> 127 : 904240 |**|

 128 -> 255 : 150271 |****** |

 256 -> 511 : 4852 | |

 512 -> 1023 : 481 | |

 1024 -> 2047 : 47 | |

 2048 -> 4095 : 1 | |

Global Scheduling Woes (from schedghostidle)

26

This is the global
agent’s loop time

https://github.com/google/ghost-userspace/blob/main/bpf/user/schedghostidle.c

● When pick_next_task_ghost() has no latched task, we could:
○ Idle. And then wait for the global agent to notice and issue a transaction… no thanks!
○ Wake that cpu’s agent, which can issue a transaction… extra context switches
○ Run a bpf program, which can also issue a transaction!

● BPF-PNT
○ BPF_PROG_TYPE_GHOST_SCHED
○ Attached in pick_next_task_ghost()

● BPF Helpers:
○ bpf_ghost_wake_agent(cpu): kick the agent on a cpu
○ bpf_ghost_run_gtid(task, …): essentially the same as a transaction

Use BPF to respond quickly to events

27

https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost.c#L815
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/bpf.c#L19
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/bpf.c#L32

● Closely coupled to the userspace agent
○ Embedded in the agent binary, libbpf-style, with a bpf skeleton
○ Has the same lifetime as the agent: agent holds the FD from BPF_LINK_CREATE
○ Coded side-by-side: e.g. edf_scheduler.cc and edf.bpf.c

● Share memory with the userspace agent
○ BPF_MAP_TYPE_ARRAY: mmapped by userspace

● Act as an agent ‘thread’, with similar privileges as userspace
● “Ring-B”: analogous to x86 Ring-3:

○ Array maps are windows into the agent’s address space
○ bpf helpers are the entry points to the kernel, like syscalls
○ BPF_PROG_RUN attach points are the interrupt descriptor table vectors.

BPF Programs are part of the Agent

28

● The agent pushes runnable tasks into (yet another) shared memory ring buffer
○ BPF-PNT consumes tasks as cpus idle; latches them in pick_next_task_ghost()
○ This is not an ABI: it’s between the agent Ring-3 and the agent Ring-B code

● Can have a hierarchy of ring buffers, based on the cache hierarchy
○ BPF-PNT looks in per-cpu, then per-numa rings, etc.

● Global agent monitors the tasks in the rings
○ Moves tasks from cpu to numa, based on an SLO or between cpus for load balancing
○ If a high priority task doesn’t run in X usec, issue a transaction to preempt some other task

● You (the agent) can come up with whatever you want, independent of the kernel
○ Just like with userspace-only ghOSt, now you have BPF too.
○ e.g. maybe implement a BPF_MAP_TYPE_PRIORITY_QUEUE and have per-cpu runqueues.

Example: BPF scheduler with a Global Agent

29

Latency of a CPU going Idle until a task is Latched:

--

 usec : count distribution

 0 -> 1 : 322273 |**|

 2 -> 3 : 621 | |

 4 -> 7 : 7775 | |

 8 -> 15 : 23681 |** |

 16 -> 31 : 39125 |**** |

 32 -> 63 : 33892 |**** |

 64 -> 127 : 19430 |** |

 128 -> 255 : 8127 |* |

 256 -> 511 : 3297 | |

 512 -> 1023 : 675 | |

 1024 -> 2047 : 60 | |

 2048 -> 4095 : 1 | |

Global Scheduling with BPF-PNT

30

This is when BPF-PNT
found a task to run

This is the global agent loop
still. If the agent falls behind
on handling messages,
BPF-PNT has no tasks to run

● It’s not enough to have BPF only at pick_next_task()
○ Respond quickly to wakeups and other runnability edges (yields, preemptions from CFS)
○ Keep BPF-PNT busy with tasks to run; e.g. push tasks into those shared memory rings

● Remember messages?
○ Messages are the primary mechanism for the kernel to inform the agent of a ghost event
○ BPF is part of the agent; let’s interpose on message delivery!

● BPF-MSG
○ BPF_PROG_TYPE_GHOST_MSG, context is struct bpf_ghost_msg
○ Attached at produce_for_task(struct task_struct *p, struct bpf_ghost_msg *msg)

● Can we replace ghost’s messaging backend with BPF_MAP_TYPE_RINGBUF?
○ Conceptually, yes. Both are shared-memory ring buffers.
○ It’d require all ghost agents to use BPF.
○ It’d allow agent-specific customizations to message payloads.

What about wakeups?

31

https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost.c#L3411

● Maybe not! But it’s all the same agent program
○ Messages are the interface to the agent, whether the agent is in Ring-3 or Ring-B

● Set of desired policy operations:
○ “Run task X on cpu 3 now”
○ “Set need_resched on cpu 5”
○ “Let cpu 6 go into a deep C state”

● Ghost’s kernel code solves the hard problems of delegating scheduling to an untrusted agent
○ Which messages to send, their semantics and parameters, etc.
○ e.g. from how many places in the kernel do we need to send MSG_TASK_NEW? 5!

● Some code is easier in userspace
○ Easily communicate with applications and system daemons (RPCs, etc.)
○ Can spin in a loop, monitoring system progress (global agent style), issuing preemptions
○ Monitor devices, e.g. flash or NIC, to adjust task priorities
○ Use complicated data structures
○ No battles with the verifier! =)

● For an agent that ran primarily in BPF, I’d still want a userspace component

Do you need a userspace agent?

32

● Main points:
○ Ghost: delegate kernel scheduling to an agent process
○ Agent composed of userspace and BPF programs
○ Use BPF as an accelerator to recover the overheads of going out and back to userspace

● I glossed over everything unrelated to BPF:
○ Netdev 0x15 talk
○ Upcoming SOSP21 paper (no link yet)

● Code
○ https://github.com/google/ghost-kernel
○ https://github.com/google/ghost-userspace
○ Sorry, this doesn’t have the latest bpf stuff yet, but it does have BPF-PNT

ghOSt + BPF

33

https://netdevconf.info/0x15/session.html?ghOSt:-Fast-&-Flexible-User-Space-Delegation-of-Linux-Scheduling
https://github.com/google/ghost-kernel/
https://github.com/google/ghost-userspace

