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Agenda

● Scheduling latency profiling
● Forced idle time accounting in core scheduling
● Using BPF to accelerate the ghOSt kernel scheduler
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Scheduling Latency Profiling
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Profile scheduling latencies 

● Tracing programs attached to sched tracepoints
○ Approach similar to runqslower

■ Tool from Bpf Compiler Collection (BCC)
■ Trace long process scheduling delays

○ Attach points
■ sched_switch
■ sched_wakeup

● What’s profiled
○ Queueing delays: Time spent on waiting in run queues
○ Oncpu time: Time when using cpu
○ Offcpu time: Time scheduled off cpu



Cgroup-oriented profiling

● Queueing delay broken down into two parts
○ Wait time when a thread from the same cgroup is using the cpu
○ Wait time when a thread from another cgroup is using the cpu

● Identify starvations due to insufficient cpu shares



Report as distributions

● Profiled stats are organized in histograms
● Allow user configuration

○ Adjust bucket bounds
○ Reset values

● Service level indicator (SLI) for node management agent



Wins by using BPF for profiling

● Flexibility
○ Allow making changes easily and swiftly from userspace

● No kernel dependencies
○ Google kernel team adopts upstream-first approach.
○ Try to minimize the kernel patches carried internally.
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Take away

● Cgroup-oriented profiling tool
○ Profile for jobs rather than threads
○ Differentiate types of starvations

● Reports distribution and allow customization
○ More insights
○ Better usability



Forced Idle Time Accounting
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Core scheduling

● Cross-HT attack
○ Involves attacker and victim running on different Hyper Threads of the same core.
○ Example: L1TF and MDS

● Core scheduling
○ Mitigation for some cross-HT attacks
○ Ensure only tasks in a user-designated trusted group can share a core (example followed)
○ Expected better performance, compared to the option of disabling HT
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Core scheduling

Core scheduling isolates trusted and 
untrusted tasks’ execution.

When running untrusted task, the sibling 
cpu either

1. runs a task from the same 
untrusted group.

Or

2. forced idle.



Forced idle time

● Correct accounting of resource consumption requires attributing forced idle 
time to the untrusted group.

○ Before, reported cpu usage = real cpu usage
○ After,    reported cpu usage = real cpu usage + forced idle time

● Why
○ Good indicator of core scheduling’s efficiency.
○ Opportunity cost of running untrusted tasks.



Measure forced idle time

● No upstream solution exists yet.
○ Challenging scenarios

■ How about >2 HT siblings?

● Using BPF
○ Provides a fast and flexible way to measure forced idle time.
○ Signal for tuning scheduling happening at userspace.



BPF Solution

● Tracing programs attached to sched tracepoints
○ Attach points

■ sched_switch
■ sched_wakeup

○ Attach points are within core scheduling’s critical section.
■ Not concerned about race between HT siblings.



Sibling HT’s state

Detecting forced idle requires us to know whether the sibling HT is idle.

● Read from sibling_rq->curr
● Required to access sibling HT’s runqueue within BPF programs



Ksyms

In BPF program, one can declare a symbol as a ksym. If kernel has exported a 
global symbol of the same name, one can read the exported kernel symbol via the 
ksym (example next page).

● Libbpf reads the symbol’s kernel address from kallsyms.
● Kernel BTF is needed if wants to direct dereference the symbol.
● BPF verifier makes sure the access is safe.  



Finding whether the sibling HT is idle
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Algorithm

At context switch, perform the following operations (SMT=2 only),

1. Take timestamp for entering forced idle, if
○ (1) sibling_rq->curr is idle and (2) context switch to untrusted task
○ (1) self is running untrusted task and (2) sibling switches to idle

2. Take timestamp for exiting forced idle, if
○ Case I

■ (1) sibling_rq->curr is untrusted task and (2) context switch from idle
○ Case II

■ (1) sibling_rq->curr is idle and (2) context switch from untrusted task

3. Charge forced idle time 
○ If case I,  charge the time to sibling_rq->curr
○ If case II, charge the time to current



Take away

● Implementing sched stats using BPF is a promising idea.

● The ability to read per-cpu variables within BPF programs enables many 
sched BPF applications.

○ Sched uses per-cpu variable extensively.
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ghOSt + BPF

Using BPF to accelerate ghOSt
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● Kernel scheduler class, below CFS in priority
● Scheduling decisions made in userspace by an agent process
● Kernel sends messages to the agent: “task X blocked on cpu 6”
● Agent issues transactions to the kernel: “run task X on cpu 12”

What is ghOSt?

User
space

Transactions

Thread/CPU Messages
ghOSt agents

CPU scheduling
decisions

Kernel

Workload

Optional scheduling hints

Kernel 
space

ghOSt 
scheduling class
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● Workload-specific scheduling policies
○ Different policies for hosting virtual machines versus running search engines
○ Agent-to-application interface is independent of the kernel ABI

● Update the scheduling policy independently from a kernel rollout
● More details: ghOSt: Fast & Flexible User Space Delegation of Linux Scheduling (Netdev 0x15 (2021))

Why ghOSt?
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● Both are through shared memory, plus a “poke”
● Messages: from the kernel to the agent:

○ Ring buffer for the payload
○ Wake an agent on a particular cpu (not necessarily where the event occurred)

● Transactions: from the agent to the kernel
○ Per-cpu array of struct ghost_txn

■ GTID (PID), cpu, txn_state, task_barrier, agent_barrier, run_flags, commit_flags, commit_time, cpu_seqnum, sync_group_owner

○ Syscall to ask the kernel to look at specific transaction requests
○ Instructs pick_next_task_ghost() to run a particular task next: called the latched task

Messages and Transactions
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● Per-cpu scheduling: an agent task on each cpu schedules its cpu
● Global scheduling:   an agent task on one   cpu schedules all cpus
● Hybrid: switch between per-cpu and global models

There’s an agent task on every cpu; userspace determines which do what.

Various Multicore Scheduler Styles
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● Typical global agent loop (spinning):
○ Handle messages
○ Schedule runnable tasks on available cpus
○ Fancy policy stuff: preempt low priority tasks with higher priority tasks

● On a large machine (112 cpus), the loop can take a while
○ Workload dependent: how many wakeups per second
○ Scheduling policy dependent: complex policy may take a while to compute

● On average, 30-60us…
○ … is the average amount of time until the agent responds to a message
○ … is the average amount of time a cpu sits idle before the agent schedules it

● That’s way too slow: every time a task blocks, we waste 30us?!?!

Global Scheduling Woes
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Latency of a CPU going Idle until a task is Latched:

----------------------------------------------------

     usec                : count    distribution

         0 -> 1          : 0        |                                        |

         2 -> 3          : 3        |                                        |

         4 -> 7          : 98       |                                        |

         8 -> 15         : 266      |                                        |

        16 -> 31         : 2784     |                                        |

        32 -> 63         : 283485   |************                            |

        64 -> 127        : 904240   |****************************************|

       128 -> 255        : 150271   |******                                  |

       256 -> 511        : 4852     |                                        |

       512 -> 1023       : 481      |                                        |

      1024 -> 2047       : 47       |                                        |

      2048 -> 4095       : 1        |                                        |

Global Scheduling Woes (from schedghostidle)

26

This is the global 
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https://github.com/google/ghost-userspace/blob/main/bpf/user/schedghostidle.c


● When pick_next_task_ghost() has no latched task, we could:
○ Idle.  And then wait for the global agent to notice and issue a transaction… no thanks!
○ Wake that cpu’s agent, which can issue a transaction… extra context switches
○ Run a bpf program, which can also issue a transaction!

● BPF-PNT
○ BPF_PROG_TYPE_GHOST_SCHED
○ Attached in pick_next_task_ghost()

● BPF Helpers:
○ bpf_ghost_wake_agent(cpu): kick the agent on a cpu
○ bpf_ghost_run_gtid(task, …): essentially the same as a transaction

Use BPF to respond quickly to events 
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● Closely coupled to the userspace agent
○ Embedded in the agent binary, libbpf-style, with a bpf skeleton
○ Has the same lifetime as the agent: agent holds the FD from BPF_LINK_CREATE
○ Coded side-by-side: e.g. edf_scheduler.cc and edf.bpf.c

● Share memory with the userspace agent
○ BPF_MAP_TYPE_ARRAY: mmapped by userspace

● Act as an agent ‘thread’, with similar privileges as userspace
● “Ring-B”: analogous to x86 Ring-3:

○ Array maps are windows into the agent’s address space
○ bpf helpers are the entry points to the kernel, like syscalls
○ BPF_PROG_RUN attach points are the interrupt descriptor table vectors.

BPF Programs are part of the Agent 
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● The agent pushes runnable tasks into (yet another) shared memory ring buffer 
○ BPF-PNT consumes tasks as cpus idle; latches them in pick_next_task_ghost()
○ This is not an ABI: it’s between the agent Ring-3 and the agent Ring-B code

● Can have a hierarchy of ring buffers, based on the cache hierarchy
○ BPF-PNT looks in per-cpu, then per-numa rings, etc.

● Global agent monitors the tasks in the rings
○ Moves tasks from cpu to numa, based on an SLO or between cpus for load balancing
○ If a high priority task doesn’t run in X usec, issue a transaction to preempt some other task

● You (the agent) can come up with whatever you want, independent of the kernel
○ Just like with userspace-only ghOSt, now you have BPF too.
○ e.g. maybe implement a BPF_MAP_TYPE_PRIORITY_QUEUE and have per-cpu runqueues.

Example: BPF scheduler with a Global Agent
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Latency of a CPU going Idle until a task is Latched:

----------------------------------------------------

     usec                : count    distribution

         0 -> 1          : 322273   |****************************************|

         2 -> 3          : 621      |                                        |

         4 -> 7          : 7775     |                                        |

         8 -> 15         : 23681    |**                                      |

        16 -> 31         : 39125    |****                                    |

        32 -> 63         : 33892    |****                                    |

        64 -> 127        : 19430    |**                                      |

       128 -> 255        : 8127     |*                                       |

       256 -> 511        : 3297     |                                        |

       512 -> 1023       : 675      |                                        |

      1024 -> 2047       : 60       |                                        |

      2048 -> 4095       : 1        |                                        |

Global Scheduling with BPF-PNT
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This is when BPF-PNT 
found a task to run

This is the global agent loop 
still.  If the agent falls behind 
on handling messages, 
BPF-PNT has no tasks to run



● It’s not enough to have BPF only at pick_next_task()
○ Respond quickly to wakeups and other runnability edges (yields, preemptions from CFS)
○ Keep BPF-PNT busy with tasks to run; e.g. push tasks into those shared memory rings

● Remember messages?
○ Messages are the primary mechanism for the kernel to inform the agent of a ghost event
○ BPF is part of the agent; let’s interpose on message delivery!

● BPF-MSG
○ BPF_PROG_TYPE_GHOST_MSG, context is struct bpf_ghost_msg
○ Attached at produce_for_task(struct task_struct *p, struct bpf_ghost_msg *msg)

● Can we replace ghost’s messaging backend with BPF_MAP_TYPE_RINGBUF?
○ Conceptually, yes.  Both are shared-memory ring buffers.  
○ It’d require all ghost agents to use BPF.
○ It’d allow agent-specific customizations to message payloads.

What about wakeups?
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● Maybe not!  But it’s all the same agent program
○ Messages are the interface to the agent, whether the agent is in Ring-3 or Ring-B

● Set of desired policy operations:
○ “Run task X on cpu 3 now”
○ “Set need_resched on cpu 5”
○ “Let cpu 6 go into a deep C state”

● Ghost’s kernel code solves the hard problems of delegating scheduling to an untrusted agent
○ Which messages to send, their semantics and parameters, etc.
○ e.g. from how many places in the kernel do we need to send MSG_TASK_NEW?  5!

● Some code is easier in userspace
○ Easily communicate with applications and system daemons (RPCs, etc.)
○ Can spin in a loop, monitoring system progress (global agent style), issuing preemptions
○ Monitor devices, e.g. flash or NIC, to adjust task priorities
○ Use complicated data structures
○ No battles with the verifier!  =)

● For an agent that ran primarily in BPF, I’d still want a userspace component

Do you need a userspace agent?
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● Main points:
○ Ghost: delegate kernel scheduling to an agent process
○ Agent composed of userspace and BPF programs
○ Use BPF as an accelerator to recover the overheads of going out and back to userspace

● I glossed over everything unrelated to BPF:
○ Netdev 0x15 talk
○ Upcoming SOSP21 paper (no link yet)

● Code
○ https://github.com/google/ghost-kernel 
○ https://github.com/google/ghost-userspace 
○ Sorry, this doesn’t have the latest bpf stuff yet, but it does have BPF-PNT

ghOSt + BPF 
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