
BPF datapath extensions for K8s workloads

Daniel Borkmann & Martynas Pumputis, Cilium.io

Cilium’s Load Balancer in one picture

2

- Handles external traffic (N-S) for services
- Consistent hashing through Maglev
- DSR or SNAT for remote backends

- Wildcarded IPv4/v6 n-tuple based PCAP
 exporter with ingress & egress
 observability points

K8s / L4LB Node

BPF at socket layer

BPF L4LB at XDP/tc layer

- Handles internal traffic (E-W) for services
- Uses connect(), sendmsg(), recvmsg(),
 getpeername() BPF cgroup v2 hooks

- Handles service backend health-probing
- Hooks into special bind() & tc/BPF logic
 to then locally craft health checking
 packets

(Maglev)
Service
Tables

PCAP
Recorder
Table

MAC IP TCP/UDP
MAC IP TCP/UDP

Client Backend

IP

Cilium agent

Pod nginx

kube-apiserver
Service

controller

Main principle: Operating as close as
possible to the socket for E-W and as
close as possible to the driver for N-S.

eth0

Agenda: Ongoing development items

➔ Part 1: The cgroup v1/v2 interference problem

➔ Part 2: TCP pacing for Pods from initns

➔ Part 3: Managed neighbor entries and fib extensions

➔ Part 4: Wildcarded BPF map lookups

Part 1: The cgroup v1/v2 interference

4

5

Cgroup v2 layout on (bare metal) K8s node

Host (initns)

tree -d -L 1 /sys/fs/cgroup/
/sys/fs/cgroup/
├── blkio
├── cpu -> cpu,cpuacct
├── cpuacct -> cpu,cpuacct
├── cpu,cpuacct
├── cpuset
├── devices
├── freezer
├── hugetlb
├── memory
├── net_cls -> net_cls,net_prio
├── net_cls,net_prio
├── net_prio -> net_cls,net_prio
├── perf_event
├── pids
├── rdma
├── systemd
└── unified

Pod nginx Pod httpd

Socket LB

cgroup v1

connect(2)

sendmsg(2)

recvmsg(2)

getpeername(2)

bind(2)

cgroup v2

6

Node running KIND
initns: /sys/fs/cgroup/

Pod nginx

Pod httpd

Pod client

veth0

veth1

br0

K8s Node A:

nodens: /sys/fs/cgroup/
initns: /sys/fs/cgroup/docker-node-a/

K8s Node B:

nodens: /sys/fs/cgroup/
initns: /sys/fs/cgroup/docker-node-b/

Cgroup v2 layout on KIND (K8s in Docker)

Host (initns)

veth0

veth2

7

Node running KIND
initns: /sys/fs/cgroup/

Pod nginx

Pod httpd

Pod client

veth0

veth1

br0

K8s Node A:

nodens: /sys/fs/cgroup/
initns: /sys/fs/cgroup/docker-node-a/

K8s Node B:

nodens: /sys/fs/cgroup/
initns: /sys/fs/cgroup/docker-node-b/

Cgroup v2 layout on KIND (K8s in Docker)

Host (initns)

veth0

veth2

Socket LB / BSocket LB / A

(nothing attached here)

Cgroup v1/v2 interference: Context

8

The case for saving 8 byte in the socket structure

➔ Assumption back in 2015: “no reason to mix cgroup v1/v2”

○ struct sock_cgroup_data is a union with v1/v2 data

○ cgroup v1 net_cls/net_prio tags vs cgroup v2 pointer

➔ Reality check: Environments today have both flavors mounted

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd1060a1d67128bb8fbe2e1384c518912cbe54e7

Retrieving socket’s cgroup v2 pointer in fast-path:

Cgroup v1/v2 interference: Context

9

Retrieving socket’s cgroup v2 pointer in fast-path:

Cgroup v1/v2 interference: Context

10

If cgroup v1 tagging is used
on the socket, fallback to
cgroup v2 root.

Retrieving socket’s cgroup v2 pointer in fast-path:

Cgroup v1/v2 interference: Context

11

If cgroup v1 tagging is used
on the socket, fallback to
cgroup v2 root.

Problematic
for today’s
environments!

12

Node running KIND
initns: /sys/fs/cgroup/

Pod nginx

Pod httpd

Pod client

veth0

veth1

br0

K8s Node A:

nodens: /sys/fs/cgroup/
initns: /sys/fs/cgroup/docker-node-a/

K8s Node B:

nodens: /sys/fs/cgroup/
initns: /sys/fs/cgroup/docker-node-b/

Cgroup v2 layout on KIND (K8s in Docker)

Host (initns)

veth0

veth2

Socket LB / BSocket LB / A

(nothing attached here)

net_cls usage

Fallback to initns root!

13

Node running KIND
initns: /sys/fs/cgroup/

Pod nginx

Pod httpd

Pod client

veth0

veth1

br0

K8s Node A:

nodens: /sys/fs/cgroup/
initns: /sys/fs/cgroup/docker-node-a/

K8s Node B:

nodens: /sys/fs/cgroup/
initns: /sys/fs/cgroup/docker-node-b/

Cgroup v2 layout on KIND (K8s in Docker)

Host (initns)

veth0

veth2

Socket LB / BSocket LB / A

(nothing attached here)

net_cls usage

Fallback to initns root!

BPF cgroup programs are
being bypassed. No policy
enforcement possible!

Agent on Node A cannot
do anything about it.

Cgroup v1/v2 interference: Recap

14

v2 cgroup management complex and cumbersome

➔ Incompatible to cgroup namespaces or non-root cgroup paths

➔ v2-to-v1 switch on the socket leaks v2 object references

➔ Unreliable v2 invocation hinders adoption of BPF cgroup programs

○ Independent 3rd party agents inevitably step on each other

○ Distros usually enable everything for max compatibility

Approach to fixing the cgroup v1/v2 interference

15

Fix: biting the bullet and detangle the two ...

➔ struct sock_cgroup_data always holds reliable cgroup pointer

➔ Implicitly also addresses the v2 reference count leaks

➔ Fix along with test cases has been upstreamed recently

https://lore.kernel.org/bpf/20210913230759.2313-1-daniel@iogearbox.net/

Part 2: TCP pacing for Pods from initns

16

Current state: Cilium & K8s

K8s Pod-specific ingress/egress bandwidth annotation:

➔ Handled by K8s CNI plugins (e.g. Cilium or bandwidth plugin)

➔ Semantics for rate enforcement points defined by plugin:

○ K8s bandwidth plugin uses combination of ifb & tbf qdisc

○ Cilium natively implements EDT via BPF & fq qdisc for egress

17

https://cilium.io/blog/2020/11/10/cilium-19#bwmanager
https://www.cni.dev/plugins/current/meta/bandwidth/

18

eth0

MQ

 FQ FQ FQ FQ

 Q1 Q4 NIC queues

Multi-queue aware
Packet scheduler

Packet (skb) departure
timestamp management

 Pod kubernetes.io/egress-bandwidth: "50M"

19

Upper stack
(IP, netfilter /
routing, …)

Host / initial netns
Pod / own netns

veth veth

bpf_fib_lookup() +
bpf_redirect() or
bpf_redirect_neigh()

bpf_redirect_peer()

BPF datapath walk-through: Overview forwarding

See LPC 2020 for
helper details

https://linuxplumbersconf.org/event/7/contributions/674/attachments/568/1002/plumbers_2020_cilium_load_balancer.pdf

20

Host / initial netns
Pod / own netns

veth veth

bpf_fib_lookup() +
bpf_redirect() or
bpf_redirect_neigh()

BPF datapath walk-through: Works today

1) skb->sk preserved
across netns switch

4) mq + fq leaf qdiscs,
skb->sk from Pod still
retained until here

3) BPF program at tc egress
setting skb->tstamp based
on aggregate’s rate limit

2) BPF program at tc
ingress marking all Pod
traffic into aggregate

21

Host / initial netns
Pod / own netns

veth veth

BPF datapath walk-through: Next steps

skb->tstamp = 0
reset on netns switch

mq + fq leaf qdiscs
cannot enforce rate
for Pod’s socket

Setting socket to BBR or
SO_MAX_PACING_RATE

22

Host / initial netns
Pod / own netns

veth veth

BPF datapath walk-through: Next steps

skb->tstamp = 0
reset on netns switch

Setting socket to BBR or
SO_MAX_PACING_RATE

4Gbit/s

Situation today:
Unstable throughput

23

Host / initial netns
Pod / own netns

veth veth

BPF datapath walk-through: Next steps

skb->tstamp = 0
reset on netns switch

Setting socket to BBR or
SO_MAX_PACING_RATE

4Gbit/s

PoC hack to retain
skb->tstamp:
Stable throughput

Rationale on today’s timestamp reset

Kernel uses different clock bases for skb->tstamp:

➔ Ingress is CLOCK_TAI, egress is CLOCK_MONOTONIC (as is fq)

➔ Forwarding from RX to TX would cause drop in fq due to

overreaching fq’s drop horizon (given clock’s offsets)

➔ No means to figure out clock base from skb->tstamp, hence reset

24

Rationale on today’s timestamp reset

Can skb->tstamp be normalized to a single base?

➔ Initially TCP EDT was based on CLOCK_TAI as well

➔ Nodes were seen where improper RTC setup caused clock

discontinuities of +50yrs during boot

➔ Confused fq which lead to drops, thus broke TCP

○ Hence CLOCK_MONOTONIC & reset on direction switch

25

https://lore.kernel.org/netdev/2185d09d-90e1-81ef-7c7f-346eeb951bf4@gmail.com/

Approach to fixing the timestamp reset

Adding new skb->tstamp_base bit (defines: 0 ➔ TAI, 1 ➔ MONO)

➔ skb_set_tstamp_{mono,tai}(skb, ktime) helper used by RX and TX

➔ fq_enqueue() detects TAI clock and resets skb->tstamp

➔ All skb->tstamp = 0 due to forwarding are then removed

○ skb_mstamp_ns union could be removed as well

➔ net_timestamp_check() must be deferred in RX after tc ingress

26

Part 3: Managed neighbor/fib extensions

27

Worker Node with
Co-located N-S
Cilium XDP L4LB

Worker Node
ECMP

IP REQ

IP RESP

Client

IP REQIP

DSR

Use case: Cilium’s XDP L4LB

28

Current state: Cilium’s XDP L4LB

XDP LB receives packet to svcIP/port, forwards to backendIP/port:

➔ BPF: Either DNAT & SNAT or DSR with IPIP/IP6IP6 encapsulation

➔ In both cases outer header has backendIP as destination

➔ bpf_fib_lookup() used to piggyback on neighbor resolution

➔ Pushed back out via XDP_TX (transparent of phys/bond device)

29

Current state: Cilium’s XDP L4LB

Neighbor resolution under XDP:

➔ Neighbor entry must be present in table, cannot resolve from XDP

➔ Agent currently resolves entries manually which is a pain point

➔ Pushes resolution as NUD_PERMANENT into neighbor table

30

https://github.com/cilium/cilium/tree/master/pkg/datapath/linux/arp

Kubernetes cluster

Node1: 10.0.0.1 Node2: 10.0.0.2

Cilium Cilium

Pod nginxapi-server

Current state: Neighbor entry management

31

Kubernetes cluster

Node1: 10.0.0.1 Node2: 10.0.0.2

Cilium Cilium

Pod nginxapi-server

Current state: Neighbor entry management

name: Node2
status:
 ...
 address: 10.0.0.2

32

Kubernetes cluster

Node1: 10.0.0.1 Node2: 10.0.0.2

Cilium Cilium

Pod nginxapi-server

Current state: Neighbor entry management

name: Node2
status:
 ...
 address: 10.0.0.2

ARPING 10.0.0.2?

33

Kubernetes cluster

Node1: 10.0.0.1 Node2: 10.0.0.2

Cilium Cilium

Pod nginxapi-server

Current state: Neighbor entry management

name: Node2
status:
 ...
 address: 10.0.0.2

ARPING 10.0.0.2?

10.0.0.2:
aa:bb:cc:dd:ee:ff

34

Kubernetes cluster

Node1: 10.0.0.1 Node2: 10.0.0.2

Cilium Cilium

Pod nginxapi-server

Current state: Neighbor entry management

ARPING 10.0.0.2?

10.0.0.2:
aa:bb:cc:dd:ee:ff

L2 neigh:

10.0.0.2 -> aa:... (PERM)

35

Kubernetes cluster

Node1: 10.0.0.1 Node2: 10.0.0.2

Cilium Cilium

Pod nginxapi-server

Current state: Neighbor entry management

ARPING 10.0.0.2?

10.0.0.2:
aa:bb:cc:dd:ee:ff

L2 neigh:

10.0.0.2 -> aa:... (PERM)

Periodic

36

Problems with current approach

➔ How often to arping? (Currently once every 5 min)

➔ Buggy, for example:

○ An obsolete NUD_PERMANENT entry for the api-server node is

fatal after agent restart if the former’s L2 address changed

○ No auto-updates from active traffic processed by the local stack

➔ Duplicating logic of net/ipv4/arp.c

➔ Need an equivalent for IPv6’s ND

37

38

Managed neighbor entry: Rationale

➔ Control plane (here: Cilium agent) requirements

○ Netlink route lookup: backendIP in same L2 or via GW IP?

○ Pushes L3 (without L2) addresses into neighbor table

➔ Neighboring subsystem auto-resolves them

➔ Periodically keeps them in REACHABLE state

➔ Option to avoid GC eviction

➔ Visibility for agent restart to resync/clean obsolete L3 entries

39

Managed neighbor entry: Design

➔ We can piggyback on NTF_USE | NTF_EXT_LEARNED neigh flag

○ Gets us quite close already:

● Triggers one-time resolution via neigh_event_send()

● Updates STALE state upon external/internal traffic events

● Ensures that neigh entries are not added to GC list

40

Managed neighbor entry: Design

➔ We can piggyback on NTF_USE | NTF_EXT_LEARNED neigh flag

○ What it does not do:

● No self-managed auto-refresh to get back to REACHABLE from

STALE state due to inactivity

● Creation flags not propagated back to user space

● Not retained upon carrier-down events (like NUD_PERMANENT)

41

Managed neighbor entry: Design

➔ Proposal: New NUD_MANAGED state for neigh entry creation

○ Volatile pseudo-state (not fixed as in NUD_PERMANENT):

● Implies NTF_USE and adds entry to a per-neigh table list

○ Uses delayed system-wq to trigger neigh_event_send() for entries

○ Triggered on BASE_REACHABLE_TIME/2 with slack

○ NUD_MANAGED can be combined with NTF_EXT_LEARNED

○ Retained upon carrier-down & refreshed once up again

42

Managed neighbor entry: iproute2 example

➔ Entry creation via ‘nud managed’:

○ ip neigh replace 192.168.1.99 dev enp5s0 extern_learn nud managed

➔ Entry dump (including flag propagation fix):

○ 192.168.1.99 dev enp5s0 lladdr 98:9b:cb:05:2e:ae use extern_learn REACHABLE

Node1

Pod client
172.16.0.1

eth0

43

Outside
10.0.0.100/24

192.168.0.1/24
10.0.0.1/24tc: BPF masquerade

FIB extensions 1/2: Source IP address selection for SNAT

$ curl 10.0.0.100

#define IPV4_MASQ \
 192.168.0.1

src_ip4 = IPV4_MASQ;
snat_v4(skb, src_ip4);

Node1

Pod client
172.16.0.1

eth0

44

Outside
10.0.0.100/24

192.168.0.1/24
10.0.0.1/24tc: BPF masquerade

FIB extensions 1/2: Source IP address selection for SNAT

$ curl 10.0.0.100

#define IPV4_MASQ \
 192.168.0.1

src_ip4 = IPV4_MASQ;
snat_v4(skb, src_ip4);

Node1

Pod client
172.16.0.1

eth0

45

Outside
10.0.0.100/24

192.168.0.1/24
10.0.0.1/24tc: BPF masquerade

FIB extensions 1/2: Source IP address selection for SNAT

$ curl 10.0.0.100

#define IPV4_MASQ \
 192.168.0.1

src_ip4 = IPV4_MASQ;
snat_v4(skb, src_ip4);

Node1

Pod client
172.16.0.1

eth0

46

Outside
10.0.0.100/24

192.168.0.1/24
10.0.0.1/24tc: BPF masquerade

FIB extensions 1/2: Source IP address selection for SNAT

$ curl 10.0.0.100Reply is sent to
192.168.0.1

bpf_skb_fib_lookup(
 ¶ms);

snat_v4(skb,
 params.ipv4_src);

Node1

Pod client
172.16.0.1

eth0

47

Outside
10.0.0.100/24

192.168.0.1/24
10.0.0.1/24tc: BPF masquerade

FIB extensions 1/2: Source IP address selection for SNAT

$ curl 10.0.0.100

48

Proposed solution for source address selection

➔ Use bpf_{xdp,skb}_fib_lookup() for source IP address selection

○ Requires changes to the BPF helper implementation

➔ Introduction of a new BPF_FIB_LOOKUP_SET_SRC flag

○ Sets the fib_params.ipv{4,6}_src address to:

fib_result_prefsrc() / fib6_info.fib6_src

➔ Another benefit: No need to hardcode IP addresses into the datapath

https://github.com/brb/linux/commit/d3b42b8fe46b252a8dad27623926f52086105399

// LB selects “nginx-1”
ifindex =
IFINDEX_BY_SUBNET(
1.1.1.1/24);

redirect(skb, ifindex);

L4LB node

eth0

49

xdp/tc: BPF L4LB

FIB extensions 2/2: Redirect in multi-homed network

eth1

eth2

Pod
nginx-1eth0

1.1.1.1/24

Pod
nginx-2eth0

2.2.2.2/24

?

?

// LB selects “nginx-1”
ifindex =
IFINDEX_BY_SUBNET(
1.1.1.1/24);

redirect(skb, ifindex);

L4LB node

eth0

50

xdp/tc: BPF L4LB

FIB extensions 2/2: Redirect in multi-homed network

eth1

eth2

Pod
nginx-1eth0

1.1.1.1/24

Pod
nginx-2eth0

2.2.2.2/24

FIB table

1.1.1.0/24 dev eth1
2.2.2.0/24 dev eth2

// LB selects “nginx-1”
bpf_skb_fib_lookup(
 ¶ms);

redirect(skb,
 params.ifindex);

L4LB node

eth0

51

xdp/tc: BPF L4LB

FIB extensions 2/2: Redirect in multi-homed network

eth1

eth2

Pod
nginx-1eth0

1.1.1.1/24

Pod
nginx-2eth0

2.2.2.2/24

FIB table

1.1.1.0/24 dev eth1
2.2.2.0/24 dev eth2

52

Proposed solution for target ifindex selection

➔ Use bpf_{xdp,skb}_fib_lookup() to determine ifindex

○ Requires fixing the BPF helper implementation, too

➔ Do not require ifindex when !BPF_FIB_LOOKUP_DIRECT

○ “params->ifindex = dev->ifindex;” already exists

○ Is current behavior a bug?

➔ Commit for making params->ifindex optional (to be upstreamed)

https://github.com/brb/linux/commit/3387287212490d30bc1a4266ae472eab9a988962

Part 4: Wildcarded BPF map lookups

53

Current state: Cilium XDP L4LB use case

Flexible LB traffic recorder to correlate inbound/outbound pkts:

➔ Introspection on path taken from fabric to L4LBs to L7 proxies/backends

➔ Higher-level API for out-of-band programming of L4LB agents

➔ Hubble then constructing PCAP for offline troubleshooting

54

https://github.com/cilium/hubble

55

https://cilium.io/57561701b3a05ef3c611442a9f930efc/hubble-record.gif

Cilium XDP L4LB: PCAP recorder overview

56

L4LB Node

eth0

xdp/tc: BPF L4LB

1) cilium_capture_in()
 - v4/v6 wildcard classification
 - per-cpu cache: capture info
 - push original ingress pkt

2) cilium_capture_out()
 - per-cpu cache: prior match?
 - push corresponding egress pkt

XDP_TX

Perf RB

-> cilium_capture()
 - meta data header e.g. recorder ID
 - pcap_pkthdr with MONO time
 - full or partial payload capture

DNAT + SNAT or DSR
with IPIP Encapsulation

PCAP recorder: Classifier rules

57

L4LB Node

eth0

xdp/tc: BPF L4LB

1) cilium_capture_in()
 - v4/v6 wildcard classification

One ‘Recorder’ consists of:

- Source CIDR, destination CIDR
- Source Port, destination Port (0: any, n: direct match)
 - Currently unsupported: n-m range
- Protocol (0: any, n: direct match)

PCAP recorder: Classifier rules

58

L4LB Node

eth0

xdp/tc: BPF L4LB

1) cilium_capture_in()
 - v4/v6 wildcard classification

One ‘Recorder’ consists of:

- Source CIDR, destination CIDR
- Source Port, destination Port (0/n) rect -
 - Currently unsupported: n-m range
- Protocol (0/n)

Agent:

- User API for programming recorders
- Tracking different masks from rules
- Regens datapath on mask set change
- v4/v6 hashtable each for rule lookup

59

PCAP recorder: Classifier rules

[…]

60

PCAP recorder: Classifier rules

[…]
Dynamic, ordered mask set,
regenerated by agent on the fly.

61

PCAP recorder: Classifier rules

[…] Generating masked key (lkey) from
original tuple (okey) and current mask.

62

PCAP recorder: Classifier rules

[…]

Using masked key (lkey) for the
hashtable lookup.

63

PCAP recorder: Classifier rules

[…]

Holds Recorder ID and
capture length.

64

PCAP recorder: Classifier rules

Masked key (lkey)
generation for the
map lookup.

Problems with current approach

➔ “Poor man’s version” of wildcard match:

○ Assumes small number of masks, but allows for large number of

matches within the mask set: acceptable for our use-case

○ Requires expensive on-the-fly recompilation on mask set change

○ Linearity for probing different masks

➔ Works on old kernels, but loop unrolling risks verifier complexity issues

65

Native wildcard-supported BPF map

➔ Ideally native BPF map to avoid costly code regeneration:

○ ‘Very fast’ lookup time (Millions/sec)

○ ‘Reasonably fast’ update time (Thousands/sec)

➔ First use-case dates back to 2018 in context of BPF + OVS to

implement Megaflows in BPF, effort stalled however

66

https://lore.kernel.org/netdev/CALDO+SYzDDpTmJttghfjUYKbo3AHDaT4L154Acwn5BGqkytkHQ@mail.gmail.com/

Native wildcard-supported BPF map

➔ Potential map candidate: TupleMerge (Eric Torng et al.)

○ Current state-of-the-art in classification algorithms

67

https://nonsns.github.io/paper/rossi19ton.pdf

➔ Next step on our agenda: PoC implementation for BPF runtime

Native wildcard-supported BPF map

68

Thanks! Questions, feedback, comments?

➔ Try it out: https://cilium.link/kubeproxy-free

➔ Cilium: https://github.com/cilium/cilium

➔ PoC code: https://git.kernel.org/[...]/dborkman/bpf.git

ccccccccccc https://github.com/brb/linux

https://cilium.io/blog/2021/05/20/cilium-110#xdp-based-standalone-load-balancer
https://github.com/cilium/cilium
https://git.kernel.org/pub/scm/linux/kernel/git/dborkman/bpf.git/
https://github.com/brb/linux

