LI N Ux September 20-24, 2021
Q PLUMBERS
CONFERENCE

Google
eBPF Dynencap + Reflection

Brian Vazquez <brianvv@google.com>




Agenda

Google

Motivation

In-kernel dynencap (0OId)
Bpf-ying dynencap (New)
Reflection

Conclusion

(]

LI N Ux September 20-24, 2021
PLUMBERS
CONFERENCE



Motivation



Ll N Ux September 20-24, 2021
ivati Q PLUMBERS
Motivation and Problem statement ENEEC e

Motivation

Traffic Engineering(TE) to forward traffic via specific routers

Setting up multiple tunnel devices
Problem

TE using tunnels required root permission and configuring hundreds of devices
would have impacted the performance of the system

Google



LI N Ux September 20-24, 2021
Q PLUMBERS
Goals CONFERENCE

e Allow unprivileged* applications to pick the exit point, without having to create
tunnel devices or mocking with the routing table

e Allow each connection to be encapsulated to a different exit point

e Allow the exit point to change in the middle of the connection

* enforcement can be implemented at per-cgroup level
Google



In-kernel
dynencap



LI N Ux September 20-24, 2021
Q PLUMBERS

In-kernel Dynencap CONFERENCE

e Add per-socket state that is used in an IP tunnel device

e Using setsockopt: Modify the per-socket state to change destination and/or
encapsulation headers

Setting destination

o ENCAP_GW

Changing encapsulation headers

o ENCAP_UDP

Google



LI N Ux September 20-24, 2021
Q PLUMBERS
In-kernel Dynencap CONFERENCE

e Host Configuration (MSS clamping)
o Use SO_MARK to select between a standard routing table and a special routing table
o Rules/Routes to guarantee packets fit into mtu after encapsulation

# ip -6 rule show

0: from all lookup local

1000: from all fwmark OxF lookup 1000
32766: from all lookup main

# ip -6 route show table 1000
default via fe80:: dev dynencap6 src fdaa::1 metric 1024 mtu lock 1444 advmss 1372 pref medium

e mtu=1500-40ipv6-16 encap =1444
e mss=1444-40ipv6-20tcp-12 opts=1372

Google



LI N Ux September 20-24, 2021
Q PLUMBERS

Challenges: cached MSS CONFERENCE

Problem:

It is possible to change routing based on certain actions i.e. setting ip_tos/so_mark.
If these actions are performed in the middle of a connection which requires a
different mss, the changes aren't reflected since the MSS is cached

Google



Challenges: cached MSS

Fix: Patch (To be proposed):

void inet csk refresh route(struct sock *sk)

{

Google

struct dst entry *dst;
/* Do not attempt refreshing the route on listeners and closed
* sockets.
*/
if ((1 << sk->sk state) & (TCPF CLOSE | TCPF LISTEN))
return; - - -
/* Forget the old dst and look up a new one. */
sk dst reset (sk);
inet csk(sk)->icsk af ops->rebuild header (sk);
/* See if the new route has a different MTU we should sync. */
dst = sk dst _get(sk);

if (dst) {
u32 mtu = dst mtu(dst);
if (mtu != inet csk(sk)->icsk pmtu cookie)

inet csk(sk)->icsk sync mss(sk, mtu);
dst release(dst);

LI N Ux September 20-24, 2021
PLUMBERS
CONFERENCE



bpf-ying
dynencap

oooooo



LINU) September 20-24, 2021
' i Q PLUMBERS
Lightweight tunnel(LWT) vs TC CONFERENCE

Comparison

e |WT attaches to routes, TC attaches to qdisc

e Both run before software segmentation (GSO)

e Both received a skb as a context but LWT is more restricted in terms of
reading/writing fields, and bpf helpers i.e. LWT don't have access to

sk_local_storage
Decision

TC was chosen based on available bpf helpers

Google



LI N Ux September 20-24, 2021
i Q PLUMBERS
eBPF Dynencap: Design CONFERENCE

e Keep encap data in a sk_local_storage map

struct bpf map def  section ('maps") dynencap map = {
.type = BPF _MAP TYPE SK STORAGE,
.key size = sizeof(int),
.value size = sizeof(struct bpf dyndest),
.map_flags = BPF F NO PREALLOC | BPF F CLONE,

}s

Google



LI N Ux September 20-24, 2021
PLUMBERS
eBPF Dynencap: Control Path e

e Provide/modify encap data at the sk level with setsockopt

SEC ("cgroup/setsockopt")
int dynencap setsockopt truct bpf sockopt *ctx) {
switch (ctx->optname) {
case ENCAP UDP:
return setsockopt dyndest encap udp(ctx);
case ENCAP GW:
return dyndest set dst (ctx);
default:
ctx->optlen = 0;
return 1;

Google



LI N Ux September 20-24, 2021
PLUMBERS
eBPF Dynencap: setsockopt CONFERENCE

static int dyndest set dst(struct bpf sockopt *ctx) {

/*Create sk storage */
dd = bpf sk storage get (&dynencap map, ctx->sk, 0,
ctx->optlen ? BPF SK STORAGE GET F CREATE : 0);

/* Store IPv6 in sk local */
optval memcpy (ctx, &dd->dst.addr6, 0, sizeof (dd->dst.addro6));

/* Mark packets */
bpf setsockopt (ctx, SOL SOCKET, SO MARK, &mark, sizeof (ctx->sk->mark));
return -1;

)
* variables, error and boundary checks are omitted

Google



LI N Ux September 20-24, 2021

PLUMBERS
eBPF Dynencap: Data Path CONFERENCE

e Read encap data at TC egress hook, and modify the packet

int dynencap (struct sk buff *skb) {

/* lookup dynencap struct */
dd = bpf sk storage get (&dynencap map, sk,0, 0);

/* read outer network header, to reuse most fields */
bpf skb load bytes(...);

/* add room for encap */
bpf skb adjust room(skb, encap len, BPF ADJ ROOM NET, flags);

/* modify outer header */

/* Store outer and encap headers */
bpf skb store bytes(skb, offset, &outer ip6,sizeof(outer ip6), BPF F INVALIDATE HASH);

return TC_ACT PIPE;

* variables, error and boundary checks are omitted
Google



LI N Ux September 20-24, 2021
Q PLUMBERS
Challenges: TSO/GSO CONFERENCE

Problem:

e Neither TSO/GSO understand custom/multiple levels of encapsulation
e Packets need to fit the mtu after encapsulation headers are added

__dev_gqueue_ xmit
sch handle egress
tcf classify
__dev_xmit skb
sch direct xmit
validate xmit skb list
validate xmit skb
skb gso segment

Google



LI N Ux September 20-24, 2021
PLUMBERS
Challenges: TSO/GSO CONFERENCE

Fix: Add a tunnel device to force software segmentation to take place before packet
is modified by BPF

~_dev queue xmit (dynencap6) // tunnel device
__dev _xmit skb
sch direct xmit
validate xmit skb list
validate xmit skb
skb_gso_segment // <--- executed because TSO is off. builds segments
bond start xmit
__dev _queue xmit (ethO)
sch _handle egress
tcf _classify // <--- now inserts headers on segment skbs
sch direct xmit

bond start xmit

Google



Reflection



Ll N Ux September 20-24, 2021
i ivati Q PLUMBERS
Encap Reflection: motivation i L

e Inthe past, different reflection features have been implemented: ToS, fwmark.
Now, with eBPF, implementing encapsulation headers reflection is possible

e As part of the TE, sometimes packets have to traverse along the same path, and
may or may not need additional metadata such as a virtual network ID.

e Most of the times, this encap data is irrelevant for the server processes. They
don't need to be aware of the overlay network

Google



Ll N Ux September 20-24, 2021
' Q PLUMBERS
Reflection: how to extend eBPF dynencap CONEFERENCE

e Egress logic of eBPF dynencap can be reused. The only difference is how the
BPF MAP is populated

e Instead of using setsockopt to specify the encapsulation headers, we want to
store the data for incoming connections. The cgroup_skb_ingress hook is used

to capture the data

Google



Reflection: "cgroup_skb/ingress”

SEC ("cgroup skb/ingress")
int rx reflection store(struct sk buff *skb)

{

bpf skb load bytes relative kb,

offset, &ip6 outer, sizeof(struct ipvéhdr),

BPF HDR START MAC) ;
outer len = bpf ntohs (ip6 outer.payload len);
1f (outer len < inner len)
return -1;
populate map (skb, dd, &ip6 outer, offset);

}
* variables, error and boundary checks are omitted

Google

LI N Ux September 20-24, 2021
PLUMBERS
CONFERENCE



Reflection: "cgroup_skb/ingress”

static always inline int populate map (struct sk buff *skb,
struct bpf dyndest *dd, struct ipvehdr *ip6 outer,
int offset)

memcpy (&dd->dst.addr6, &ip6 outer->saddr,sizeof(ip6 outer->saddr));
memcpy (&dd->src.addr6, &ip6 outer->daddr, sizeof(ip6 outer->daddr));
bpf skb load bytes relative(skb, offset,

sdd, i,
BPF_HDR_START MAC) <0)

* variables, error and boundary checks are omitted

Google

LI N Ux September 20-24, 2021
PLUMBERS
CONFERENCE



LI N Ux September 20-24, 2021
PLUMBERS

Challenges: BPF_MAP_TYPE_SK_STORAGE Q CONFERENCE

Problem:

e sk_storage isn't available for listener sockets (req socket)
Fix:
e Have an ephemeral entry in a global bpf map isolated per cgroup with a 5-tuple
as a key:

struct bpf map def  section('maps") syn encap map = {
.type = BPF MAP TYPE LRU HASH,
.key size = sizeof(struct connection),
.value size = sizeof(struct bpf dyndest),
.max_entries = 1000,

Google



Conclusion



LI N Ux September 20-24, 2021
i Q PLUMBERS
Conclusion CONFERENCE

What went well?

BPF-fying dynencap solved the goals initially set, and it was easily extended for encap
headers reflection without invasive changes in the kernel

What went wrong?

Modifying packets in the middle of the connection uncovered unexpected issues (MSS
cache, GSO/TSO0), which led to non-trivial fixes

e sk_local_storage for listener sockets?
e Tunnel (dummy) device without headers?
e BPF_MAP_TYPE_NS_STORAGE?

Google



LI N Ux September 20-24, 2021
' Q PLUMBERS
Contributors PLUMBERS

Thanks to Coco Li, Mahesh Bandewar, Stanislav Fomichev and Willem de Bruijn

Thank you!

Google



Questions?



