
Automatically optimizing BPF
programs using program synthesis
Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana, Anirudh Sivaraman

1

Outline

• Background
• Motivation
• Challenge
• Our solution (program synthesis)
• Main techniques

• Equivalence check
• Equivalence check acceleration
• Safety check

• Evaluation
• Conclusion and future work

2

BPF can safely and efficiently extend kernel
functionality
• A general kernel extension mechanism
• Networking
• Observability
• Security

• A virtual machine with RISC instruction set
• Eleven 64-bit registers
• Stack (512 bytes)
• Key-value maps
• Helper functions

3

Process

Network Hardware

Syscall

sendmsg() recvmsg()

Ke
rn

el
sp

ac
e Sockets

TCP/IP

Network Device
Driver

BPF program

BPF program

BPF program

BPF program

BPF program

Traffic
Control

BPF program

Workflow of BPF developers

The kernel checker ensures safety.
Unprivileged BPF programs shouldn’t

crash the kernel or leak privileged data!
4

Kernel
space

User
space BPF bytecode

BPF program

Kernel checker

JIT compiler

Process

bpf() syscall

accepted

Sockets

TCP/IP

Network device
driver

X86_64

Syscall

BPF program

BPF program
ClangC code

BPF program

BPF program

BPF bytecode

X86_64

Outline

• Background
• Motivation
• Challenge
• Our solution (program synthesis)
• Main techniques

• Equivalence check
• Equivalence check acceleration
• Safety check

• Evaluation
• Conclusion and future work

5

6

Motivation: It’s hard to develop
BPF programs

Low latency

Compact

SafeHigh throughput

high-quality

(1) Size

• The kernel checker must verify program safety quickly
• Modern kernels examine 1 million instructions across all code paths

7

(1) Size

• In practice, programs with even a few thousand instructions may be
rejected by the kernel checker

8

Disable some features or refactor the code

https://github.com/cilium/cilium/issues/15249

(2) Performance

• Even small optimizations matter at high line rates
• Option 1: Developers manually optimize code
• Strong expertise
• Painstaking for long programs

• Option 2: Compiler optimization support
• clang-9 -O2/O3 produced identical code for benchmarks

9

10

The Problem: Can we automatically produce
compact, more performant programs?

The Challenge:
Tension between Performance and Safety

Outline

• Background
• Motivation
• Challenge
• Our solution (program synthesis)
• Main techniques

• Equivalence check
• Equivalence check acceleration
• Safety check

• Evaluation
• Conclusion and future work

11

12

Kernel checker is stricter than necessary

• A program “unsafe” to the kernel checker may in fact be safe

…

Example:

(u16)(r10 - 511) = 0xFFFF
// store a value on the stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1

13

Kernel checker is stricter than necessary

• A program “unsafe” to the kernel checker may in fact be safe

…

Example:

(u16)(r10 - 511) = 0xFFFF
// store a value on the stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1

0xFF

0xFF

14

Kernel checker is stricter than necessary

• A program “unsafe” to the kernel checker may in fact be safe

…

Example:

(u16)(r10 - 511) = 0xFFFF
// store a value on the stack

Stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1

0xFF

0xFF

Rejected

Constraint
stack access alignment
(stack access address - stack start) mod 2 == 0

“Unsafe”: (r10 - 511) - (r10 - 512) mod 2 = 1

1

15

Kernel checker is stricter than necessary

• A program “unsafe” to the kernel checker may in fact be safe

…

Example:

(u16)(r10 - 511) = 0xFFFF
// store a value on the stack

Stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1
…

0xFF

0xFF

Stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1

0xFF

0xFF

Rejected Accepted

Constraint
stack access alignment
(stack access address - stack start) mod 2 == 0

“Unsafe”: (r10 - 511) - (r10 - 512) mod 2 = 1

1

Pattern-based optimizations

• Traditional compilers match patterns & rewrite small regions of code

Example:

(u8)(rX + off) = 0
(u8)(rX + off + 1) = 0

can be optimized as

(u16)(rX + off) = 0

16

…

Memory

rX + off

rX + off + 1

rX + off + 2

…

Memory

rX + off

rX + off + 1

rX + off + 2

Pattern-based optimizations

• Traditional compilers match patterns & rewrite small regions of code

Example:

(u8)(rX + off) = 0
(u8)(rX + off + 1) = 0

can be optimized as

(u16)(rX + off) = 0

17

…

Memory

rX + off

rX + off + 1

rX + off + 2

0x0

…

Memory

rX + off

rX + off + 1

rX + off + 2

Pattern-based optimizations

• Traditional compilers match patterns & rewrite small regions of code

Example:

(u8)(rX + off) = 0
(u8)(rX + off + 1) = 0

can be optimized as

(u16)(rX + off) = 0

18

…

Memory

rX + off

rX + off + 1

rX + off + 2

0x0

0x0

…

Memory

rX + off

rX + off + 1

rX + off + 2

Pattern-based optimizations

• Traditional compilers match patterns & rewrite small regions of code

Example:

(u8)(rX + off) = 0
(u8)(rX + off + 1) = 0

can be optimized as

(u16)(rX + off) = 0

19

…

Memory

rX + off

rX + off + 1

rX + off + 2

0x0

0x0

…

Memory

rX + off

rX + off + 1

rX + off + 2

0x0

0x0

Optimizations can violate safety!

• Many pattern-matching optimizations are incompatible with the
safety constraints enforced by the checker!

Example:

(u8)(rX + off) = 0
(u8)(rX + off + 1) = 0

can be optimized as

(u16)(rX + off) = 0

20

Constraint: stack access alignment
(stack access address - stack start) mod 2 == 0

“Unsafe”: (r10 - 511) - (r10 - 512) mod 2 = 1

…

Stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1

0xFF

0xFF

RejectedThis optimization will be rejected

Every potential optimization
must also consider safety.

21

We call this the
phase-ordering problem

of BPF compilation.

Outline

• Background
• Motivation
• Challenge
• Our solution (program synthesis)
• Main techniques

• Equivalence check
• Equivalence check acceleration
• Safety check

• Evaluation
• Conclusion and future work

22

23

Kernel
space

User
space BPF bytecode

BPF program

Kernel checker

JIT compiler

bpf() syscall

accepted

X86_64

BPF program

BPF program
Clang

C code

BPF program

BPF bytecode

K2

BPF program

BPF bytecode

K2, an optimizing compiler for BPF

K2 achieves

✓ 6–26% compression
✓ 1.36–55.03% lower average latency
✓ 0–4.75% higher throughput

relative to best clang-compiled program
among the -O2/Os options

K2’s Contributions

• K2 leverages stochastic program synthesis to optimize programs

• K2 provides formal correctness and safety guarantees
• BPF instruction set in first-order logic

• BPF arithmetic & logic, pointer aliasing, control flow, BPF maps, helper functions
• Fast equivalence-checking techniques: 6 orders of magnitude gain

24

25

Stochastic Program Synthesis

A search procedure that automatically generates
programs satisfying a specification:

- Correctness (semantic equivalence)
- Safety
- High performance

Consider these aspects together:
address the phase-ordering problem!

26

A randomized method1 to explore the space of
programs, guided by a general cost function

1Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. ASPLOS 2013.

Stochastic Program Synthesis

Fast and generalizes easily to BPF optimization
enumerative constraint-based cooperative stochastic

Handles complex costs with complex constraints
(safety)(performance)

Stochastic search in K2

27

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Perf: 10
Error: 0
Safe: 0
Total: 10

Current program
(input program)

Iteration 1

Stochastic search in K2

28

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Perf: 10
Error: 0
Safe: 0
Total: 10

Current program
(input program)

Perf: 10
Error: 100
Safe: MAX
Total: MAX

Proposal

Iteration 1

Max acceptable cost increment: 0.5
MAX > 10+0.5

Stochastic search in K2

29

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Perf: 10
Error: 0
Safe: 0
Total: 10

Current program
(input program)

Perf: 10
Error: 100
Safe: MAX
Total: MAX

Proposal

Iteration 1

Max acceptable cost increment: 0.5
MAX > 10+0.5

rejected

Stochastic search in K2

30

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Perf: 10
Error: 0
Safe: 0
Total: 10

Current program
(input program)

Perf: 10.1
Error: 0
Safe: 0
Total: 10.1

Proposal

Iteration 2

Max acceptable cost increment: 0.5
10.1 < 10+0.5

Stochastic search in K2

31

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Perf: 10
Error: 0
Safe: 0
Total: 10

Current program
(input program)

Perf: 10.1
Error: 0
Safe: 0
Total: 10.1

Proposal

Iteration 2

Max acceptable cost increment: 0.5
10.1 < 10+0.5

accepted

Helps the search find the
global optimal

Stochastic search in K2

32

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Current program

Iteration 2

Perf: 10.1
Error: 0
Safe: 0
Total: 10.1

Iteration 2

Stochastic search in K2

33

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Current program

Iteration 2
Perf: 8
Error: 1
Safe: 0
Total: 9

Proposal

Max acceptable cost increment: 0.5
9 < 10.1+0.5 Perf: 10.1

Error: 0
Safe: 0
Total: 10.1

Iteration 3

Stochastic search in K2

34

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Current program

Iteration 2
Perf: 8
Error: 1
Safe: 0
Total: 9

Proposal

Max acceptable cost increment: 0.5
9 < 10.1+0.5 accepted

Perf: 10.1
Error: 0
Safe: 0
Total: 10.1

Iteration 3

Stochastic search in K2

35

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Iteration 3
Perf: 8
Error: 1
Safe: 0
Total: 9

Current program
Iteration 3

Stochastic search in K2

36

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Iteration 3
Perf: 8
Error: 1
Safe: 0
Total: 9

Current program

Max acceptable cost increment: 0.5
8 < 9+0.5

Perf: 8
Error: 0
Safe: 0
Total: 8

Proposal

Iteration 4

Stochastic search in K2

37

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Iteration 3
Perf: 8
Error: 1
Safe: 0
Total: 9

Current program

Max acceptable cost increment: 0.5
8 < 9+0.5

Perf: 8
Error: 0
Safe: 0
Total: 8

Proposal

accepted

Iteration 4

Stochastic search in K2

38

MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Iteration 4

Current program

Perf: 8
Error: 0
Safe: 0
Total: 8

With more iterations, the best
programs have lower cost!

K2 Overview Input
program

K2

39

Optimized
program

BPF bytecode

BPF bytecode

K2 Overview Input
program

K2

40

Proposal Current
program

Decide next program

Cost computation
Stochastic
search
loop

Next
Prog.

Optimized
program

BPF bytecode

BPF bytecode

K2 Overview Input
program

K2

41

Proposal Current
program

Decide next program

Cost computation
Stochastic
search
loop

Next
Prog.

Programs
safe + equivalent

Optimized
program

ac
ce
pt
ed

BPF bytecode

BPF bytecode

K2 Overview Input
program

K2

42

Proposal Current
program

Decide next program

Cost computation
Stochastic
search
loop

Next
Prog.

Programs
Current
program

Top-k
programs

safe + equivalent

Hit max
iteration

Perf. cost ranking

Optimized
program

Post processing

ac
ce
pt
ed

BPF bytecode

BPF bytecode

K2 Overview Input
program

K2

43

Proposal Current
program

Decide next program

Cost computation
Stochastic
search
loop

Next
Prog.

Programs
Current
program

Top-k
programs

safe + equivalent

Hit max
iteration

Perf. cost ranking

Optimized
program

Post processing

ac
ce
pt
ed

BPF bytecode

BPF bytecode

Correctness Safety Performance+ +

Computing cost

44

Proposal

Cost function

Program
interpreter

Test
cases

Safety
checker

Counter
example

Performance
estimation

Cost

Counter
example

Cost
computation

Equivalence
checker

pass

pass

fail

failfail

fail

• Performance cost:
• instruction count for

reducing program size
• program estimated running

time for improving
throughput/latency

Performance
estimation

Computing cost

45

Proposal

Cost function

Program
interpreter

Test
cases

Safety
checker

Counter
example

Performance
estimation

Cost

Counter
example

Cost
computation

Equivalence
checker

pass

pass

fail

fail

• Pruning unequal or unsafe
proposals by interpreting
them with test cases
• Speed up the cost

computation

Program
interpreter

unequal/unsafe

fail

fail

Outline

• Background
• Motivation
• Challenge
• Our solution (program synthesis)
• Main techniques

• Equivalence check
• Equivalence check acceleration
• Safety check

• Evaluation
• Conclusion and future work

46

Proposal

Cost function

Program
interpreter

Test
cases

Safety
checker

Counter
example

Performance
estimation

Cost

Counter
example

Cost
computation

Equivalence
checker

pass

pass

fail

fail

Equivalence
checker

fail

fail

Equivalence check

• Logically assert that, for all inputs, given the same input to the two
programs, the outputs of the programs must be the same

• How to do this in general? Proving program equivalence requires
formalizing the programs’ behaviors in logic

47

r0 = r10
exit

program 2

r0 = r1
exit

program 1

output: r0

input: r1, r10

outputs not equal if r1 != r10

BPF programs in this example are fake, only used to illustrate the equivalence check

Equivalence check

• First-order logic with the theory of 64-bit-wide bit vectors
• If unequivalent, solvers also return a counterexample (one input)

where the two programs generate different outputs

inputs to program 1 == inputs to program2
⋀ input-output behavior of program 1
⋀ input-output behavior of program 2
⇒ outputs of program 1 != outputs of program2

48

Equivalence check

• First-order logic with the theory of 64-bit-wide bit vectors

r1_p1 == r1_p2
⋀ r10_p1 == r10_p2

input: r1, r10
output: r0

49

inputs to program 1 == inputs to program2
⋀ input-output behavior of program 1
⋀ input-output behavior of program 2
⇒ outputs of program 1 != outputs of program2

r0 = r10
exit

program 2

r0 = r1
exit

program 1

r0_p1 == r1_p1

r0_p2 == r10_p2

⋀

⋀

r0_p1 != r0_p2⇒

Equivalence check

• First-order logic with the theory of 64-bit-wide bit vectors

r1_p1 == r1_p2
⋀ r10_p1 == r10_p2

input: r1, r10
output: r0

50

inputs to program 1 == inputs to program2
⋀ input-output behavior of program 1
⋀ input-output behavior of program 2
⇒ outputs of program 1 != outputs of program2

r0 = r10
exit

program 2

r0 = r1
exit

program 1

r0_p1 == r1_p1

r0_p2 == r10_p2

⋀

⋀

r0_p1 != r0_p2⇒

SAT: program1 != program 2
model:
r1_p1 = 1, r10_p1 = 2
r1_p2 = 1, r10_p2 = 2
(same inputs)
r0_p1 = 1
r0_p2 = 2
(different outputs)

SMT
solver

Formalization in first-order logic

• Characterizing input-output behavior of programs requires formalizing
each BPF instruction opcode in first-order logic

• Tedious, but straightforward for arithmetic and logic instructions

• BPF programs are loop free

• Challenge: memory load/store, branching, BPF helper calls (in the paper)

51

Outline

• Background
• Motivation
• Challenge
• Our solution (program synthesis)
• Main techniques

• Equivalence check
• Equivalence check acceleration
• Safety check

• Evaluation
• Conclusion and future work

52

Fast equivalence check

• Equivalence checking is an expensive operation
• The first-order formula solving time grows quickly with instructions,

branches, memory operations, map operations, etc.
• Cilium recvmsg4 (94 instructions): eq. check time > 24 hours!
• Equivalence checking is in K2’s inner (stochastic search) loop

53

Can we reduce equivalence checking time?

Fast equivalence check

• Simplify the first-order logic formula → reduce solving time
• Cilium recvmsg4 (94 instructions)

> 24 hours 1 minute 7 millisecondsModular
verification

• memory type concretization
• map type concretization
• memory offset concretization

• check two windows instead
of two programs

54

Selective
concretization

Fast equivalence check: Modular verification

55

• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2 r3 = r2simplify

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

win 1

r3 = r1

win 2

postfix

prefix

Fast equivalence check: Modular verification

56

• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2 r3 = r2simplify

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

win 1

r3 = r1

win 2

What are output variables to be compared?

Live variables out of the window
(infer from the postfix program)

postfix

prefix

Fast equivalence check: Modular verification

57

• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2 r3 = r2simplify

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

win 1

r3 = r1

win 2

What are output variables to be compared?

Live variables out of the window
(infer from the postfix program)

output: r3postfix

prefix

r0
r3

Fast equivalence check: Modular verification

58

• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

== !=

simplify r3 = r2

win 1

r3 = r1

win 2

output: r3postfix

prefix

Fast equivalence check: Modular verification

59

• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

== !=
Infer input variables and preconditions from the

prefix program

simplify r3 = r2

win 1

r3 = r1

win 2

output: r3postfix

prefix

Fast equivalence check: Modular verification

60

• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

==
Infer input variables and preconditions from the

prefix program

input: r1 = 0, r2 = 0

simplify r3 = r2

win 1

r3 = r1

win 2

output: r3

==

postfix

prefix

Fast equivalence check: Modular verification

61

• Suppose programs only differ in a small window of instructions
• Equivalence check over two windows instead of two programs
• Infer:
• Input variables and preconditions from the prefix program
• Output variables from the postfix program

win input variables preconditions inferred from the prefix program
⋀ variables live into win 1 == variables live into win 2
⋀ input-output behavior of win 1
⋀ input-output behavior of win 2
⇒ variables live out of win 1 != variables live out of win 2

Outline

• Background
• Motivation
• Challenge
• Our solution (program synthesis)
• Main techniques

• Equivalence check
• Equivalence check acceleration
• Safety check

• Evaluation
• Conclusion and future work

62

Proposal

Cost function

Program
interpreter

Test
cases

Safety
checker

Counter
example

Performance
estimation

Cost

Counter
example

Cost
computation

Equivalence
checker

pass

pass

fail

failfail

fail

Safety
checker

Safety check

• Safety checks
• Control flow
• Memory accesses within bounds
• Access alignment
• Checker-specific constraints

• Techniques
• Static analysis
• First-order logic formula

• Use safety counterexample inputs to prune unsafe
programs

63

Proposal

Cost function

Program
interpreter

Test
cases

Safety
checker

Counter
example

Performance
estimation

Cost

Counter
example

Cost
computation

Equivalence
checker

pass

pass

fail

failfail

fail

Outline

• Background
• Motivation
• Challenge
• Our solution (program synthesis)
• Main techniques

• Equivalence check
• Equivalence check acceleration
• Safety check

• Evaluation
• Conclusion and future work

64

65

Evaluation:
How well does it work?

Program compactness
(number of instructions)

Program performance
(Latency & Throughput)

How compact are K2-synthesized programs?

66

Benchmark1 Number of instructions Compiling
time (sec)clang2 K2 Compression

xdp_router_ipv4 111 99 10.81% 898

xdp_map_access 30 26 13.33% 27

xdp_redirect 43 35 18.60% 523

from-network 39 29 25.64% 6871

xdp_pktcntr 22 19 13.64% 288

xdp-balancer 1771 1607 9.26% 167,428
1 More benchmark results are in the paper
2 The smallest program across clang -O1/O2/O3/Os

• 19 benchmarks
• Cilium, Facebook, hXDP,

kernel samples
• Instruction count: 18-1771

• Compression: 6-26%
• Mean: 13.95%

• Compiling time
• Mean: 22 minutes (excluding

Facebook’s Katran xdp-
balancer)

How beneficial is K2 to packet throughput
and latency?

• BPF programs attached to the DUT’s network device driver
• Measure packet-processing throughput and the average roundtrip

latency

67

Traffic
Generator

Device Under
Test (DUT)

Traffic forward path

Traffic reverse path

BPFT-Rex

• Throughput: the maximum loss-free forwarding rate (MLFFR) in Mpps (millions of
packets per second) per core

68

clang -O2/O3

K2

clang -O1

Higher throughput is better

How beneficial is K2 to packet throughput
and latency?

• Throughput: the maximum loss-free forwarding rate (MLFFR) in Mpps (millions of
packets per second) per core
• Avg. throughput improvement across 6 benchmarks: 0–4.75%

69

Benchmark -O1 -O2/O3 K2 Gain

xdp2 8.855 9.547 9.748 2.11%

xdp_router_ipv4 1.496 1.496 1.496 0.00%

xdp_fwd 4.886 4.984 5.072 1.77%

xdp1 16.837 16.85 17.65 4.75%

xdp_map_access 14.679 14.678 15.074 2.70%

xdp-balancer DNL* 3.292 3.389 2.94%

* Not able load into the kernel as the program was rejected by the kernel checker

How beneficial is K2 to packet throughput
and latency?

• TX rate: low (smaller than the lowest throughput of the worst clang or K2)
70

• Average roundtrip latency in 4 different packet sending rates in Mpps (millions of
packets per second) per core

Smaller latency is better

How beneficial is K2 to packet throughput
and latency?

• TX rate: medium (the lower throughput between the best clang and K2)
71

• Average roundtrip latency in 4 different packet sending rates in Mpps (millions of
packets per second) per core

Smaller latency is better

How beneficial is K2 to packet throughput
and latency?

• TX rate: high (the higher throughput between the best clang and K2)
72

• Average roundtrip latency in 4 different packet sending rates in Mpps (millions of
packets per second) per core

Smaller latency is better

How beneficial is K2 to packet throughput
and latency?

• TX rate: saturating (higher than the highest throughput of the best clang or K2)
73

• Average roundtrip latency in 4 different packet sending rates in Mpps (millions of
packets per second) per core

Smaller latency is better

How beneficial is K2 to packet throughput
and latency?

74

• Average roundtrip latency in 4 different packet sending rates in Mpps (millions of
packets per second) per core
• 4 benchmarks: reduction 1.36–55.03%

How beneficial is K2 to packet throughput
and latency?

Optimizations discovered by K2

• Performance goal: reduce instruction count
• Example 1: coalescing multiple memory operations (from Facebook’s xdp_pktcntr)

r1 = 0
(u32)(r10-4) = r1
(u32)(r10-8) = r1

(u64)(r10-8) = 0

two 32-bit writes one 64-bit write

75

Optimizations discovered by K2

• Performance goal: reduce instruction count
• Example 1: coalescing multiple memory operations (from Facebook’s xdp_pktcntr)

r1 = 0
(u32)(r10-4) = r1
(u32)(r10-8) = r1

(u64)(r10-8) = 0

76

• Example 2: context-dependent optimizations (from Facebook’s xdp-balancer)
• Window input: r3 = 0x00000000ffe00000

r0 = r2
r0 = r0 & r3
r0 = r0 >> 21

r0 = lower32(r2)
r0 = r0 >> 21

Outline

• Background
• Motivation
• Challenge
• Our solution (program synthesis)
• Main techniques

• Equivalence check
• Equivalence check acceleration
• Safety check

• Evaluation
• Conclusion and future work

77

• K2: compiler for safe, compact, performance-optimized BPF programs
• Up to 26% size and 55% latency reductions

• Domain-specific techniques in synthesis and verification
• Reduce equivalence checking time by 6 orders of magnitude

78

Conclusion

Synthesis is a viable approach to optimize BPF programs

Future work

• Scale up optimization to larger BPF programs in a short time

• Explore generating safe optimized code for other infrastructures such
as the Windows OS and programmable NICs

• Repair unsafe BPF programs

79

Future work

• Scale up optimization to larger BPF programs in a short time

• Explore generating safe optimized code for other infrastructures such
as the Windows OS and programmable NICs

• Repair unsafe BPF programs

80

Future work

• Scale up optimization to larger BPF programs in a short time

• Explore generating safe optimized code for other infrastructures such
as the Windows OS and programmable NICs

• Repair unsafe BPF programs

81

Discussion

• Benchmarks (program size, performance)

• What’s a good time budget for an optimizing compiler in your context?

• How can K2 deal with the evolution of the kernel checker?

• Feedback on K2 and future work

82

k2_compiler@email.rutgers.edu

83

Thank you!

https://k2.cs.rutgers.edu

