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BPF can safely and efficiently extend kernel
functionality
• A general kernel extension mechanism
• Networking
• Observability
• Security

• A virtual machine with RISC instruction set
• Eleven 64-bit registers
• Stack (512 bytes)
• Key-value maps
• Helper functions
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Workflow of BPF developers

The kernel checker ensures safety. 
Unprivileged BPF programs shouldn’t 

crash the kernel or leak privileged data!
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Motivation: It’s hard to develop
BPF programs

Low latency

Compact

SafeHigh throughput

high-quality



(1) Size

• The kernel checker must verify program safety quickly
• Modern kernels examine 1 million instructions across all code paths
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(1) Size

• In practice, programs with even a few thousand instructions may be
rejected by the kernel checker
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Disable some features or refactor the code

https://github.com/cilium/cilium/issues/15249



(2) Performance

• Even small optimizations matter at high line rates
• Option 1: Developers manually optimize code
• Strong expertise
• Painstaking for long programs

• Option 2: Compiler optimization support
• clang-9 -O2/O3 produced identical code for benchmarks
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The Problem: Can we automatically produce
compact, more performant programs?

The Challenge:
Tension between Performance and Safety
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Kernel checker is stricter than necessary

• A program “unsafe” to the kernel checker may in fact be safe

…

Example:

*(u16*)(r10 - 511) = 0xFFFF
// store a value on the stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1
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Kernel checker is stricter than necessary

• A program “unsafe” to the kernel checker may in fact be safe
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Kernel checker is stricter than necessary

• A program “unsafe” to the kernel checker may in fact be safe

…

Example:

*(u16*)(r10 - 511) = 0xFFFF
// store a value on the stack

Stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1

0xFF

0xFF

Rejected

Constraint
stack access alignment
(stack access address - stack start) mod 2 == 0

“Unsafe”: (r10 - 511) - (r10 - 512) mod 2 = 1

1
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Kernel checker is stricter than necessary

• A program “unsafe” to the kernel checker may in fact be safe

…

Example:

*(u16*)(r10 - 511) = 0xFFFF
// store a value on the stack

Stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1
…

0xFF

0xFF

Stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1

0xFF

0xFF

Rejected Accepted

Constraint
stack access alignment
(stack access address - stack start) mod 2 == 0

“Unsafe”: (r10 - 511) - (r10 - 512) mod 2 = 1
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Pattern-based optimizations

• Traditional compilers match patterns & rewrite small regions of code

Example:

*(u8*)(rX + off) = 0 
*(u8*)(rX + off + 1) = 0 

can be optimized as

*(u16*)(rX + off) = 0 
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Pattern-based optimizations

• Traditional compilers match patterns & rewrite small regions of code

Example:

*(u8*)(rX + off) = 0 
*(u8*)(rX + off + 1) = 0 

can be optimized as

*(u16*)(rX + off) = 0 
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Pattern-based optimizations

• Traditional compilers match patterns & rewrite small regions of code

Example:

*(u8*)(rX + off) = 0 
*(u8*)(rX + off + 1) = 0 

can be optimized as

*(u16*)(rX + off) = 0 
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Pattern-based optimizations

• Traditional compilers match patterns & rewrite small regions of code

Example:

*(u8*)(rX + off) = 0 
*(u8*)(rX + off + 1) = 0 

can be optimized as

*(u16*)(rX + off) = 0 
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Optimizations can violate safety!

• Many pattern-matching optimizations are incompatible with the 
safety constraints enforced by the checker!

Example:

*(u8*)(rX + off) = 0 
*(u8*)(rX + off + 1) = 0 

can be optimized as

*(u16*)(rX + off) = 0 
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Constraint: stack access alignment
(stack access address - stack start) mod 2 == 0

“Unsafe”: (r10 - 511) - (r10 - 512) mod 2 = 1

…

Stack

stack
start

r10

r10-512

r10-511

r10-510

r10-1

0xFF

0xFF

RejectedThis optimization will be rejected



Every potential optimization 
must also consider safety.
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We call this the 
phase-ordering problem 

of BPF compilation.
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Kernel
space

User
space BPF bytecode

BPF program

Kernel checker

JIT compiler

bpf() syscall

accepted

X86_64

BPF program

BPF program
Clang

C code

BPF program

BPF bytecode

K2

BPF program

BPF bytecode

K2, an optimizing compiler for BPF

K2 achieves

✓ 6–26% compression
✓ 1.36–55.03% lower average latency
✓ 0–4.75% higher throughput

relative to best clang-compiled program
among the -O2/Os options



K2’s Contributions

• K2 leverages stochastic program synthesis to optimize programs

• K2 provides formal correctness and safety guarantees
• BPF instruction set in first-order logic

• BPF arithmetic & logic, pointer aliasing, control flow, BPF maps, helper functions
• Fast equivalence-checking techniques: 6 orders of magnitude gain
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Stochastic Program Synthesis

A search procedure that automatically generates 
programs satisfying a specification:

- Correctness (semantic equivalence)
- Safety
- High performance

Consider these aspects together:
address the phase-ordering problem!
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A randomized method1 to explore the space of 
programs, guided by a general cost function

1Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. ASPLOS 2013.

Stochastic Program Synthesis

Fast and generalizes easily to BPF optimization
enumerative     constraint-based      cooperative     stochastic

Handles complex costs with complex constraints
(safety)(performance)



Stochastic search in K2
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MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Perf: 10
Error: 0
Safe: 0
Total: 10

Current program 
(input program)

Iteration 1



Stochastic search in K2
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Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Perf: 10
Error: 0
Safe: 0
Total: 10

Current program 
(input program)

Perf: 10
Error: 100
Safe: MAX
Total: MAX
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Iteration 1

Max acceptable cost increment: 0.5
MAX > 10+0.5



Stochastic search in K2
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MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Perf: 10
Error: 0
Safe: 0
Total: 10

Current program 
(input program)

Perf: 10
Error: 100
Safe: MAX
Total: MAX

Proposal

Iteration 1

Max acceptable cost increment: 0.5
MAX > 10+0.5

rejected



Stochastic search in K2
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Total cost = Perf + Error + Safe

Perf: 10
Error: 0
Safe: 0
Total: 10

Current program 
(input program)

Perf: 10.1
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Safe: 0
Total: 10.1
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Iteration 2

Max acceptable cost increment: 0.5
10.1 < 10+0.5



Stochastic search in K2
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Total cost = Perf + Error + Safe
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Helps the search find the 
global optimal



Stochastic search in K2
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Stochastic search in K2
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Stochastic search in K2
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Stochastic search in K2
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Stochastic search in K2
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Stochastic search in K2
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Total cost = Perf + Error + Safe
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Perf: 8
Error: 1
Safe: 0
Total: 9
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Stochastic search in K2
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MAX

Cost contour line: the darker line, the lower cost

Total cost = Perf + Error + Safe

Iteration 4

Current program

Perf: 8
Error: 0
Safe: 0
Total: 8

With more iterations, the best 
programs have lower cost!



K2 Overview Input 
program

K2
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K2 Overview Input 
program

K2
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K2 Overview Input 
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K2 Overview Input 
program

K2
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Computing cost
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time for improving
throughput/latency
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Computing cost
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Equivalence check

• Logically assert that, for all inputs, given the same input to the two 
programs, the outputs of the programs must be the same

• How to do this in general? Proving program equivalence requires 
formalizing the programs’ behaviors in logic
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r0 = r10
exit

program 2

r0 = r1
exit

program 1

output: r0

input: r1, r10

outputs not equal if r1 != r10

BPF programs in this example are fake, only used to illustrate the equivalence check



Equivalence check

• First-order logic with the theory of 64-bit-wide bit vectors
• If unequivalent, solvers also return a counterexample (one input)

where the two programs generate different outputs

inputs to program 1 == inputs to program2
⋀ input-output behavior of program 1
⋀ input-output behavior of program 2
⇒ outputs of program 1 != outputs of program2
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Equivalence check

• First-order logic with the theory of 64-bit-wide bit vectors

r1_p1 == r1_p2
⋀ r10_p1 == r10_p2

input: r1, r10
output: r0
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inputs to program 1 == inputs to program2
⋀ input-output behavior of program 1
⋀ input-output behavior of program 2
⇒ outputs of program 1 != outputs of program2

r0 = r10
exit

program 2

r0 = r1
exit

program 1

r0_p1 == r1_p1

r0_p2 == r10_p2

⋀

⋀

r0_p1 != r0_p2⇒



Equivalence check

• First-order logic with the theory of 64-bit-wide bit vectors

r1_p1 == r1_p2
⋀ r10_p1 == r10_p2

input: r1, r10
output: r0
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inputs to program 1 == inputs to program2
⋀ input-output behavior of program 1
⋀ input-output behavior of program 2
⇒ outputs of program 1 != outputs of program2

r0 = r10
exit

program 2

r0 = r1
exit

program 1

r0_p1 == r1_p1

r0_p2 == r10_p2

⋀

⋀

r0_p1 != r0_p2⇒

SAT: program1 != program 2
model:
r1_p1 = 1, r10_p1 = 2
r1_p2 = 1, r10_p2 = 2
(same inputs)
r0_p1 = 1
r0_p2 = 2
(different outputs)

SMT
solver



Formalization in first-order logic

• Characterizing input-output behavior of programs requires formalizing 
each BPF instruction opcode in first-order logic

• Tedious, but straightforward for arithmetic and logic instructions

• BPF programs are loop free

• Challenge: memory load/store, branching, BPF helper calls (in the paper)
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Fast equivalence check

• Equivalence checking is an expensive operation
• The first-order formula solving time grows quickly with instructions,

branches, memory operations, map operations, etc.
• Cilium recvmsg4 (94 instructions): eq. check time > 24 hours!
• Equivalence checking is in K2’s inner (stochastic search) loop

53

Can we reduce equivalence checking time?



Fast equivalence check

• Simplify the first-order logic formula → reduce solving time
• Cilium recvmsg4 (94 instructions)

> 24 hours 1 minute 7 millisecondsModular 
verification

• memory type concretization
• map type concretization
• memory offset concretization

• check two windows instead
of two programs
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Selective 
concretization



Fast equivalence check: Modular verification
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• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2 r3 = r2simplify

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

win 1

r3 = r1

win 2

postfix

prefix



Fast equivalence check: Modular verification
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Fast equivalence check: Modular verification
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• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2 r3 = r2simplify

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

win 1

r3 = r1

win 2

What are output variables to be compared?

Live variables out of the window
(infer from the postfix program)

output: r3postfix

prefix

r0
r3



Fast equivalence check: Modular verification
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• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

== !=

simplify r3 = r2

win 1

r3 = r1

win 2

output: r3postfix

prefix



Fast equivalence check: Modular verification
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• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

== !=
Infer input variables and preconditions from the

prefix program

simplify r3 = r2

win 1

r3 = r1

win 2

output: r3postfix

prefix



Fast equivalence check: Modular verification
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• Suppose programs only differ in a small window of instructions

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r2

program 1

r1 = 0
r2 = 0

r0 = r3
exit

r3 = r1

program 2

==
Infer input variables and preconditions from the

prefix program

input: r1 = 0, r2 = 0

simplify r3 = r2

win 1

r3 = r1

win 2

output: r3

==

postfix

prefix



Fast equivalence check: Modular verification
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• Suppose programs only differ in a small window of instructions
• Equivalence check over two windows instead of two programs
• Infer:
• Input variables and preconditions from the prefix program
• Output variables from the postfix program

win input variables preconditions inferred from the prefix program
⋀ variables live into win 1 == variables live into win 2
⋀ input-output behavior of win 1
⋀ input-output behavior of win 2
⇒ variables live out of win 1 != variables live out of win 2
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Safety check

• Safety checks
• Control flow
• Memory accesses within bounds
• Access alignment
• Checker-specific constraints

• Techniques
• Static analysis
• First-order logic formula

• Use safety counterexample inputs to prune unsafe
programs
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Evaluation: 
How well does it work?

Program compactness
(number of instructions)

Program performance
(Latency & Throughput)



How compact are K2-synthesized programs?

66

Benchmark1 Number of instructions Compiling
time (sec)clang2 K2 Compression

xdp_router_ipv4 111 99 10.81% 898

xdp_map_access 30 26 13.33% 27

xdp_redirect 43 35 18.60% 523

from-network 39 29 25.64% 6871

xdp_pktcntr 22 19 13.64% 288

xdp-balancer 1771 1607 9.26% 167,428
1 More benchmark results are in the paper
2 The smallest program across clang -O1/O2/O3/Os

• 19 benchmarks
• Cilium, Facebook, hXDP,

kernel samples
• Instruction count: 18-1771

• Compression: 6-26%
• Mean: 13.95%

• Compiling time
• Mean: 22 minutes (excluding 

Facebook’s Katran xdp-
balancer)



How beneficial is K2 to packet throughput 
and latency?

• BPF programs attached to the DUT’s network device driver
• Measure packet-processing throughput and the average roundtrip

latency

67

Traffic 
Generator

Device Under 
Test (DUT)

Traffic forward path

Traffic reverse path

BPFT-Rex



• Throughput: the maximum loss-free forwarding rate (MLFFR) in Mpps (millions of 
packets per second) per core

68

clang -O2/O3

K2

clang -O1

Higher throughput is better

How beneficial is K2 to packet throughput 
and latency?



• Throughput: the maximum loss-free forwarding rate (MLFFR) in Mpps (millions of 
packets per second) per core
• Avg. throughput improvement across 6 benchmarks: 0–4.75%
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Benchmark -O1 -O2/O3 K2 Gain

xdp2 8.855 9.547 9.748 2.11%

xdp_router_ipv4 1.496 1.496 1.496 0.00%

xdp_fwd 4.886 4.984 5.072 1.77%

xdp1 16.837 16.85 17.65 4.75%

xdp_map_access 14.679 14.678 15.074 2.70%

xdp-balancer DNL* 3.292 3.389 2.94%

* Not able load into the kernel as the program was rejected by the kernel checker

How beneficial is K2 to packet throughput 
and latency?



• TX rate: low (smaller than the lowest throughput of the worst clang or K2)
70

• Average roundtrip latency in 4 different packet sending rates in Mpps (millions of 
packets per second) per core

Smaller latency is better

How beneficial is K2 to packet throughput 
and latency?



• TX rate: medium (the lower throughput between the best clang and K2)
71

• Average roundtrip latency in 4 different packet sending rates in Mpps (millions of 
packets per second) per core

Smaller latency is better

How beneficial is K2 to packet throughput 
and latency?



• TX rate: high (the higher throughput between the best clang and K2)
72

• Average roundtrip latency in 4 different packet sending rates in Mpps (millions of 
packets per second) per core

Smaller latency is better

How beneficial is K2 to packet throughput 
and latency?



• TX rate: saturating (higher than the highest throughput of the best clang or K2)
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• Average roundtrip latency in 4 different packet sending rates in Mpps (millions of 
packets per second) per core

Smaller latency is better

How beneficial is K2 to packet throughput 
and latency?
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• Average roundtrip latency in 4 different packet sending rates in Mpps (millions of 
packets per second) per core
• 4 benchmarks: reduction 1.36–55.03%

How beneficial is K2 to packet throughput 
and latency?



Optimizations discovered by K2

• Performance goal: reduce instruction count
• Example 1: coalescing multiple memory operations (from Facebook’s xdp_pktcntr)

r1 = 0
*(u32*)(r10-4) = r1
*(u32*)(r10-8) = r1

*(u64*)(r10-8) = 0

two 32-bit writes one 64-bit write

75



Optimizations discovered by K2

• Performance goal: reduce instruction count
• Example 1: coalescing multiple memory operations (from Facebook’s xdp_pktcntr)

r1 = 0
*(u32*)(r10-4) = r1
*(u32*)(r10-8) = r1

*(u64*)(r10-8) = 0
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• Example 2: context-dependent optimizations (from Facebook’s xdp-balancer)
• Window input: r3 = 0x00000000ffe00000

r0 = r2
r0 = r0 & r3
r0 = r0 >> 21

r0 = lower32(r2)
r0 = r0 >> 21



Outline

• Background
• Motivation
• Challenge
• Our solution (program synthesis)
• Main techniques

• Equivalence check
• Equivalence check acceleration
• Safety check

• Evaluation
• Conclusion and future work
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• K2: compiler for safe, compact, performance-optimized BPF programs
• Up to 26% size and 55% latency reductions

• Domain-specific techniques in synthesis and verification
• Reduce equivalence checking time by 6 orders of magnitude
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Conclusion

Synthesis is a viable approach to optimize BPF programs



Future work

• Scale up optimization to larger BPF programs in a short time

• Explore generating safe optimized code for other infrastructures such
as the Windows OS and programmable NICs

• Repair unsafe BPF programs
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Future work

• Scale up optimization to larger BPF programs in a short time
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as the Windows OS and programmable NICs

• Repair unsafe BPF programs
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Discussion

• Benchmarks (program size, performance)

• What’s a good time budget for an optimizing compiler in your context?

• How can K2 deal with the evolution of the kernel checker?

• Feedback on K2 and future work
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k2_compiler@email.rutgers.edu 
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Thank you!

https://k2.cs.rutgers.edu


