From XDP to Socket

Routing of packets beyond XDP with BPF

Udip Pant Martin Lau
Software Engineer Software Engineer FA C E B O O K |nfl’a Stl’u Ctu re

About

XDP: 1.5 years in production. Evolution and
lessons learned.

Author: Nikita V. Shirokov

About

XDP: 1.5 years in production. Evolution and
lessons learned.

Author: Nikita V. Shirokov

XDP enabled application

L4 load balancer:
https://github.com/facebookincubator/katran

Reason for L4 load balancing;
https://atscaleconference.com/videos/networking-
scale-2018-layer-4-load-balancing-at-facebook/

About

XDP: 1.5 years in production. Evolution and
lessons learned.

Author: Nikita V. Shirokov

XDP enabled application . :
°p Operational Experience

L4 load balancer:
https://github.com/facebookincubator/katran

fieason for L4 load bakncing: Every packet toward facebook.com has been

https://atscaleconference.com/videos/networking- processed by XDP enabled application since
scale-2018-layer-4-load-balancing-at-facebook/ M ay 2017
)

Introduce bPF MAP TYPE REUSEPORT SOCKARRAY]and

BPF_PROG_TYPE_SK_REUSEPORT

From: Martin KaFai Lau <kafai-AT-fb.com>

To: <netdev-AT-vger.kernel.org>

Subject: [PATCH bpf-next 0/9] Introduce BPF_MAP_TYPE_REUSEPORT_SOCKARRAY and BPF_PROG_TYPE_SK_REUSEPORT
Date: Wed, 8 Aug 2018 00:59:17 -0700

Message-ID: <20180808075917.3009181-1-kafai@fb.com> Y
Cc: Alexei Starovoitov <ast-AT-fb.com>, Daniel Borkmann <daniel-AT-iogearbox.net>, <kernel-team-AT-fb.com> [P A I ‘ H 3 b f_ t 0 / 9] B PF I CP h d t
Archive-link: Article V nex ea er O lons

This series introduces a new map type "BPF_MAP_ TYPE_REUSEPORT_ SOCKARRAY"
and a new prog type BPF_PROG_TYPE_SK_REUSEPORT.

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Here is a snippet from a commit message:

"To unleash the full potential of a bpf prog, it is essential for the
userspace to be capable of directly setting up a bpf map which can then
be consumed by the bpf prog to make decision. In this case, decide which
SO_REUSEPORT sk to serve the incoming request.

By adding BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, the userspace has total control . . .
and visibility on where a SO_REUSEPORT sk should be located in a bpf map. L Sub]ect. [PATCH v3 bpf-next 0/9] BPF TCP header OptlonS
The later patch will introduce BPF_PROG_TYPE_SK REUSEPORT such that
the bpf prog can directly select a sk from the bpf map. That will e From' Martln KaFal Lau <kafal@xxxxxx>
raise the programmability of the bpf prog attached to a reuseport . . .
group (a group of sk serving the same IP:PORT). ¢ Date' Thu’ 30 Jul 2020 13'56'57 -0700
. . e (Cc: Alexei Starovoitov <ast@xxxxxxxxxx>, Daniel Borkmann <daniel @xxxxxxxxxxxxx>, Eric Dumazet
For example, in UDP, the bpf prog can peek into the payload (e.g.
through the "data” pointer introduced in the later patch) to learn <netdev@xxxXxXXXXXXxxxxxx>, Yuchung Cheng <ycheng @xxxxxxxxxx>
the application level's connection information and then decide which sk ..
to pick from a bpf map. The userspace can tightly couple the sk's location] Smtp-orlgln-cluster: ftW2CO4
in a bpf map with the application logic in generating the UDP payload's Gt .
connection information. This connection info contact/API stays within the L Smtp-orlgln-hostname: deVblgOOS .fth.facebOOk.Com
userspace.

o Smitp-origin-hostprefix: devbig
Also, when used with map-in-map, the userspace can switch the
old-server-process's inner map to a new-server-process's inner map

in one call "bpf map update_elem(outer_map, &index, &new_reuseport_array)".
The bpf prog will then direct incoming requests to the new process instead

of the old process. The old process can finish draining the pending The earlier effort in BPF-TCP-CC allows the TCP Congestion Control

requests (e.g. by "accept()") before closing the old-fds. [Note that . . . o 4 »

deleting a fd from a bpf map does not necessary mean the fd is closed]"” algorlthm to be written in BPF. It opens up opportunltles to allow
a faster turnaround time in testing/releasing new congestion control

ideas to production environment.

Please see individual patch for details

Maowv+in WaWai Tawn /Q)e

The same flexibility can be extended to writing TCP header option.
It is not uncommon that people want to test new TCP header option

to improve the TCP performance. Another use case is for data-center
that has a more controlled environment and has more flexibility in
putting header options for internal traffic only.

Overview

Part |: Zero downtime restartof L7 service

* Motivation
* Problems with existing approach

 bpf sk reuseport for efficiency and
operational wins

Part |l: Consistent and stateless routing of
TCP Packets

* Limitations of Consistent Hashing

 Embed server info with BPF TCP
Header options (sock ops)

Traffic Infrastructure @ FB

z c £% HHVM
(@) (@)
_ 2 2 .
2 £ django
& =)
g ae Long-lived -‘:
Q connections MQTT
Load Load App. servers
Balancers Balancers PP

Edge PoP Origin DC

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Traffic Infrastructure @ FB

User connections
terminated at Edge

qc) GC) @ HHVM
(@) (@)
_ 2 2 .
2 £ django
& =)
g ae Long-lived -‘:
D connections MQTT
Load Load App. servers
Balancers Balancers PP

Edge PoP Origin DC

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Traffic Infrastructure @ FB

Load-balances
across L7 proxies

User connections
terminated at Edge

qc) GC) @ HHVM
(@) (@)
_ 2 2 .
2 £ django
& =)
g ae Long-lived -‘:
D connections MQTT
Load Load App. servers
Balancers Balancers PP

Edge PoP Origin DC

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Traffic Infrastructure @ FB

Load-balances Load-balances across
across L7 proxies application servers

User connections

terminated at Edge qC) GC) w7 HHVM
(@) (@)
o 2 > .
2 £ django
o :
g ae Long-lived -‘:
D connections MQTT
Load Load App. servers
Balancers Balancers PP

Edge PoP Origin DC

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Part |: Routing of packets within a host for Zero
Downtime Restarts

Traffic Infrastructure @ FB

Load-balances across
application servers

Load-balances
across L7 proxies

User connections

terminated at Edge @ v HHVM
_ 2 |
2 django
&
Long-lived '
Q WA | connections MQTT
Lo Loa App. servers
Balancers Balancers PP-

Edge PoP rigin DC

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Traditional Restarts

4:} Proxygen,

User Katran 4:} Proxygen,
conn g
4:} Proxygeny,

Edge PoP

Origin

DC

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
nf tha Anniial conferance of tha ACM Snecial Interact (Arnirin nn Nata Commiinicatinnh on the annlicatinne fechnolnoiee architectiirae and nrotoconle for comniiter commiinicatinn (nn 520-

Traditional Restarts

4:} Proxygen,

User | Katran 4:} Proxygen, | Origin
conn DC
{} Proxygeny,

Edge PoP

—— Baseline

Proxygen,

—— Zero

Restart
Timeline TO Tinit Tstart Tdone

\]

.. .
Draining Period
Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
nf tha Anniial conferance of tha ACM Snecial Interact (Arnirin nn Nata Commiinicatinnh on the annlicatinne fechnolnoiee architectiirae and nrotoconle for comniiter commiinicatinn (nn 520-

Traditional Restarts e
LoD

conn.

Possible

“““““““““““ ‘:} Proxygen, routes

“ “
.
.
.
.
.
.
.
s .
.® .
3 .

ﬁ%ﬁw ' .

User o = 4» Proxygen, . Origin

conn T X DC
4}» Proxygeny

Edge PoP

New

L 4
4
.
.
.
D
.
.
L 4
L 4
.
.
.
Q
.

Ly
.
.
.
.
.
.
.
.
.
.
.
g
-

e S — Baseline

conn.
Proxygen,

—— Zero

Restart
Timeline T, T Tstart Tdone

\]

.. .
Draining Period
Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
nf tha Anniial conferance of tha ACM Snecial Interact (Arnirin nn Nata Commiinicatinnh on the annlicatinne fechnolnoiee architectiirae and nrotoconle for comniiter commiinicatinn (nn 520-

Traditional Restarts e
LoD

conn.

Possible

9 Proxygen, routes

““
““
.

ﬁ%ﬁw ' .

User o = 4» Proxygen, . Origin

conn T X DC
4}» Proxygeny

Edge PoP

New

.®
.
.
.
.
.®
.
.
s ®

L 4
4
.
.
.
D
.
.
L 4
L 4
.
.
.
Q
.

Ly
.
.
.
.
.
.
.
.
.
.
.
g
-

I — ﬁ ——— Baseline

conn.
Proxygen,

—— Zero

Restart
Timeline T, T Tstart Tdone

\]

.| i
Draining Period
Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
Afthe Anniial confoarance of the ACM Snecial Interact Croiin on NData Commiinication on the annlicatinne technolnaiee architectiirae and nrotoenle for comnfiispo - nknown Authoris ligensed girsley CC

https://commons.wikimedia.org/wiki/File:Flat_restart_icon.svg
https://creativecommons.org/licenses/by-sa/3.0/

Traditional Restarts conn

conn.
Proxygen,

Restart
Timeline

Existing
n:l:l:l:l:l:;:l:}

conn.

Possible

fvoed 'O Proxygen, routes

““
““
.

v ' .

User o = 4» Proxygen, . Origin

conn T X DC
4}» Proxygeny

Edge PoP

New

.®
.
.
.
.
.®
.
.
s ®

L 4
4
.
.
.
D
.
.
L 4
L 4
.
.
.
Q
.

Ly
.
.
.
.
.
.
.
.
.
.
.
g
-

Baseline

—— Zero

TO Tinit Tstart Tdone

\]

Draininb Period

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
Afthe Anniial confoarance of the ACM Snecial Interact Croiin on NData Commiinication on the annlicatinne technolnaiee architectiirae and nrotoenle for comnfiispo - nknown Authoris ligensed girsley CC

https://commons.wikimedia.org/wiki/File:Flat_restart_icon.svg
https://creativecommons.org/licenses/by-sa/3.0/

Existing

Traditional Restarts

4)
Now runs the LN
dated code Troo) New
_upda ' conn.

Possible
“““““““““ ‘:} Proxygen, routes

“ “
.
.
.
.
.
.
.
s .
.® .
3 .

v ' .

User o = 4» Proxygen, . Origin

conn T X DC
4}» Proxygeny

Edge PoP

L 4
4
.
.
.
D
.
.
L 4
L 4
.
.
.
Q
.

Ly
.
.
.
.
.
.
.
.
.
.
.
g
-

Baseline
conn.

Proxygen,

Zero

Restart
Timeline T, T Tstart Tdone

\]

.. .
Draining Period
Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
nf tha Anniial conferance of tha ACM Snecial Interact (Arnirin nn Nata Commiinicatinnh on the annlicatinne fechnolnoiee architectiirae and nrotoconle for comniiter commiinicatinn (nn 520-

Existing

Traditional Restarts

4)
Now runs the LN
dated code Troo) New
_upda ' conn.

Possible
“““““““““ ‘:} Proxygen, routes

“ “
.
.
.
.
.
.
.
s .
.® .
3 .

v ' .

User o = 4» Proxygen, . Origin

conn T X DC
4}» Proxygeny

Edge PoP

L 4
4
.
.
.
D
.
.
L 4
L 4
.
.
.
Q
.

Ly
.
.
.
.
.
.
.
.
.
.
.
g
-

Baseline
conn.

Proxygen,

Zero

Restart
Timeline T, T Tstart Tdone

\]

.. .
Draining Period
Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
nf tha Anniial conferance of tha ACM Snecial Interact (Arnirin nn Nata Commiinicatinnh on the annlicatinne fechnolnoiee architectiirae and nrotoconle for comniiter commiinicatinn (nn 520-

Implications

- Reduced cluster CPU capacity.

- Lower # of instances available.

|\ [

70
60
50

—
[}
o

1 3 5 7 9 11131517 19 21 23
Timeline [minutes]

Cluster CPU
capacity [%]

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Implications

- Reduced cluster CPU capacity.

- Lower # of instances available.

100
80

70
60
50

1 3 5 7 9 11131517 19 21 23
Timeline [minutes]

Cluster CPU
capacity [%]

- Slow update speed.
- Unable to “move fast’.

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

How to release updates while ensuring no
disruptions, zero downtime and fast iterations?

Socket Takeover (Proxygen restarts) Ko cos

,——————————-5

Accepted Listening
sockets 1-N sockets

UDP VIP
sockets

Machine

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541)

Socket Takeover (Proxygen restarts)

- Takeover TCP listening and UDP VIP sockets.
- Oldinstance drains, updated instance
handles new connections.

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541)

4:) Proxygen,

SCM_RIGHTS
and CMSG

Machine

Socket Takeover (Proxygen restarts) Ko cos

- Takeover TCP listening and UDP VIP sockets. o
- Old instance drains, updated instance Eﬁét';g—
handles new connections. conns.

- Connection state?
- TCP -> Preserved in kernel and old instance. \/
- UDP -> Application level QUIC state.x

New TCRH
conns.

xisting & ne
QUIC conns.

Machine

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541)

Socket Takeover (Proxygen restarts)

Takeover TCP listening and UDP VIP sockets.

Connection state?

User-space packet forwarding.

Old instance drains, updated instance E’%'F[‘g—

handles hew connections. conns.

TCP -> Preserved in kernel and old instance.\/
UDP -> Application level QUIC state.x

Coordination between Proxygens within New TCP
machine. conns.
QUIC “ConnectionID” based packet New QUIC
forwarding. conns.

4:) Proxygen,

Machine

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541)

Overall Socket-Takeover Mechanism
With support for UDP / QUIC

QuicServer 1 QuicServer 2

[Starting] —s takeover relsted communication

a) bind() and accept()
[Running| - === Forwarding of QUIC packets

quic-server 16 = @
C) Start socket takeover server

connect ()
|Starting|

. bind() to takeover handler
port for each QUIC-VIP

list of
\%s, takeover Ports
» .-

"tr QuUic.
Server s4 - o quic-server id = 1

(:) ::dup(FD) and accept()

sage
§1omation s e .
con (Running|

D \ ;oru3”°ed 9“°ket?,.,-f-‘=: Forward packets with quic-server id = @ in conn id
Damningy] = | forwe™ | .- -

[Shutdown|

Figure: Takeover + packet forwarding mechanism for QUIC

Overall Socket-Takeover Mechanism
With support for UDP / QUIC

QuicServer 1 QuicServer 2

Com
atarting icati
l d (= —eetyeLAKEOver related communication

é bind() and accept()
|Running| - == =p Forwarding of QUIC packets

quic-server id = @
C:) Start socket takeover server

Connect ()

g ing
[Starting|

. bind() to takeover handl
port for each QUIC.

quic-server id = 1

") ::dup(FD) and accept()
.

(Running|

Forward packets with quic-server id = @ in <onn id
Draining)

(Shutdown]

Figure: Takeover + packet forwarding mechanism for QUIC

Issues with the existing Socket-Takeover

Complex and Fragile process

A lot of interprocess communication (worse with
UDP)

What if either of the process crashes?
Is this socket transferred?

Potential outages and vulnerabilities
Root problem:

The sockets are shared between the old and
the new process.

New Proxygen

-

fd

recv(udp) /
accept(tcp)

bind(“[2a03::face]:443")

Old Proxygen

Issues with the existing Socket-Takeover

Complex and Fragile process

A lot of interprocess communication (worse with

UD P) New Proxygen ;

What if either of the process crashes?

|s this socket transferred?

recv(udp) /

Potential outages and vulnerabilities acceptitcp)
Root problem: .
bind(“[2a03::face]:443")
The sockets are shared between the old and _—

the new process.
. Can we avoid sharing the same sockets?

Old Proxygen

Issues with the existing Socket-Takeover

With SO_REUSEPORT: No consistent routing for UDP packets in a connection during restarts

Proxygen-old Proxygen-new

Kernel

Xx-0 rx-1 rx-2 rx-.. rx-n

Incomin@ackets

Issues with the existing Socket-Takeover
Without SO_REUSEPORT: Single thread to multiplex _all_UDP packets

Performance
worker threads
Address scaling concerns - such as single threaded | packets PN
acceptor for UDP S s
Root problem: - E b N Py
SO_REUSEPORT + UDP alone leads to lots of disruptions during ~ — S
proxygen restart. T

Bottleneck at accepting thread

Issues with the existing Socket-Takeover
Without SO_REUSEPORT: Single thread to multiplex _all_UDP packets

Performance
worker threads
Address scaling concerns - such as single threaded |, packets PN
acceptor for UDP S s
Root problem: - E b N Py
SO_REUSEPORT + UDP alone leads to lots of disruptions during ~ — S
proxygen restart. T

« How can we keep the inter-socket routing of UDP
paC kets COﬂSiSte nt? Bottleneck at accepting thread

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution
Attach a bpf program at socket level (bpf_sk_reuseport)

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution
Attach a bpf program at socket level (bpf_sk_reuseport)

Generically handle multiple protocols

Better control on the startup path for a new process on per vip level

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution
Attach a bpf program at socket level (bpf_sk_reuseport)

Generically handle multiple protocols

Better control on the startup path for a new process on per vip level
Performance

Address scaling concerns - such as single threaded acceptor for UDP with
SO_REUSEPORT

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution
Attach a bpf program at socket level (bpf_sk_reuseport)

Generically handle multiple protocols
Better control on the startup path for a new process on per vip level
Performance

Address scaling concerns - such as single threaded acceptor for UDP with
SO_REUSEPORT

Routing control at packet level
Adjust weight of traffic per cpu

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution
Attach a bpf program at socket level (bpf_sk_reuseport)

Generically handle multiple protocols
Better control on the startup path for a new process on per vip level
Performance

Address scaling concerns - such as single threaded acceptor for UDP with
SO_REUSEPORT

Routing control at packet level

Adjust weight of traffic per cpu
Flexibility to iterate in future

Can keep each packet in same CPU, NUMA isolation?

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution

Proxygen-old

Kernel

X-0 rx-1 x-2 rx-.. rx-n

Incomin@ackets

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution

Proxygen-old Proxygen-new

Kernel

X-0 rx-1 x-2 rx-.. rx-n

Incomin@ackets

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution

Attach a bp}fj program at socket level
roxygen-o

=N
BPF'?PrCQra

Kernel

rx-0 rx-1 x-2 rx-.. rx-n
Incomin ackets

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution

Attach a bpf program at socket level

Proxygen-old Proxygen-new

=N
BPF'?Prcbra

Kernel

rx-0 rx-1 x-2 rx-.. rx-n
Incomin ackets

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution

Attach a bpf program at socket level

Proxygen-old Proxygen-new
sk sk sk sk sk sk sk sk
/2\3 ﬁ
BPF-Progra bpf_sk_select_reuseport(
K | reuse_md,
erne peusepopt_ar\r‘ay, < Dictates process
index: < Dictates socket

X-0 rx-1 x-2 rx-.. rx-n flags
Incominﬁackets

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Taking a step back and thinking about a generic solution

Attach a bpf program at socket level

Proxygen-old Proxygen-new
sk sk sk sk sk sk sk sk
/2\3 ﬁ
BPF-Progra bpf_sk_select_reuseport(
K | reuse_md,
erne reuseport_array2,
index,

X-0 rx-1 x-2 rx-.. rx-n flags
Incominﬁackets

SK-LB powered by SO_REUSEPORT_SOCKARRAY

Better control on the startup path for a new process on per vip level

KEY Value
VIP1:443 ey | Old_fd1_1 | old_fd1_2 old_fdl n
VIP2:443 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY
VIPN:443

BPF_MAP_TYPE_HASH_OF MAPS

SK-LB powered by SO_REUSEPORT_SOCKARRAY

Better control on the startup path for a new process on per vip level

KEY Value
VIP2:443
VIPN:443

BPF_MAP_TYPE_HASH_OF MAPS

One socket per thread

Address scaling concerns - such as single threaded accepotor for UDP

Each thread bind its own socket to port

No more sharing of sockets!

sk
Primary consideration is for UDP which
does not have the concept of “one-new-

connection => one-new-socket” like TCP

No packet drops during restarts

“— % of servers being updated

Total packets dropped }L

10x scaling of UDP packet processing ability

Control host hits limit at 3x traffic; test scales well to > 20x (until CPU saturates)

|
! —
— — 1 — —
o o ' o S o) o
Q Q Q
o) Q QL
o o O —_ o o
—-h —-h 1 =—h Q —h —h
& & 1 2 Q & &
— — I 9.. (@) — =
(©] o 1 O = O o
! 1
C N
— N 1 — w
| w o o 3
s
:
=
5
(]| "
'l ‘Ilrjl|
1A |
hel| |
!
'3
12
|1
I
I
I

10x scaling of UDP packet processing ability

Control host hits limit at 3x traffic; test scales well to > 20x (until CPU saturates)

il

I —
— — | — —
o o ' B S o o
Q Q I Q o Q QL
o o ey —_ o o

—y

o o o x a ©
(o) O e = Q Q
o o -3 e S o
- = 8 I = ™
I I T . I I

1 w
- N LW o - 3

I

l\

o

|

o

Control: /

error_rate=3k/s with 3x load

N
i E Test w/ Sk-LB:
' error_rate=0.5k/s with 30x load!

EESSISSRE I B — RS I— e i RSy — e

10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15 14:30 14:45 15:00

ium:system.net.udp.error_drop_per_s (DS1) — sum:system.net.udp.error_drop_per_s (DS2)

BPF to rescue
With bpf sk _reuseport + SO _REUSEPORT SOCKARRAY

Operational Efficiency
wins wins
simplified the overall 10x more efficient for
process, UDP load

no IPC => less failures

Reliability
wins
no packet drops due

to misrouting of

packets, orrace
during TCP 3WH

Experience deploying it
CPU spikes due to spin_lock in bind() path

* lIssues in multi-tenant environment with large
number of sockets in a netns

* Ledto spikesin CPU and even host locking

Experience deploying it
CPU spikes due to spin_lock in bind() path

/net/ipv4/inet connection sock.c

* |ssues in multi-tenant environment with large head = inet_csk_find_open_port(sk, &tb, &port);
] if (!head
number of sockets in a netns Y eturn et

Head = &hinfo->bhash[inet _bhashfn(net, port,
* Led to spikesin CPU and even host locking hinfo->bhash_size)];
spin_lock bh(&head->lock);

e bind () Impl takes a Spin lock to walk a |Ong %net_bind_bl.Jcket_for‘_each(tb, &head->chain)
hashtable bucket with just port as key alone th et Ca(iDnet(D), net) && tho>Lindev == Lindev &8
(where 443 and 80 are common ports) goto tb_found;

Eb_Found:

if (!hlist_empty(&tb->owners)) {
if (sk->sk _reuse == SK_FORCE_REUSE)
goto success;

if ((tb->fastreuse > @ && reuse) ||
sk_reuseport _match(tb, sk))
goto success;
if (inet csk bind conflict(sk, tb, true, true))
goto fail unlock;

Experience deploying it
CPU spikes due to spin_lock in bind() path

* Bug with caching of SO_REUSEPORT in the bind-address
cache

binc
binc

binc

[1]

(::1]:443"); /[Fwit
(::2]:443"); /[Fwit

(::]1:443"); [T wit

[1] Bug fixed in

https://lore.kernel.org/lkml/20200601174049.377204943@lin

nout SO_REU
n SO_REUSE

SEPORT. Succeed. */
PORT. Succeed. */

n SO_REUSE

PORT. Still Succeed */

uxfoundation.org/

/net/ipv4/inet connection sock.c

spin_lock bh(&head->lock);

if ((tb->fastreuse > @ && reuse) ||
sk_reuseport _match(tb, sk))

goto success;
// ™" returned true for ::

if (inet csk bind conflict(sk,
tb, true, true))
goto fail unlock;

}

https://lore.kernel.org/lkml/20200601174049.377204943@linuxfoundation.org/

Experience deploying it
CPU spikes due to spin_lock in bind() path

* Bug with caching of SO_REUSEPORT in the bind-address

cache

bind("[::1]:443"); /*wit
bind("[::2]:443"); /[*wit
bind("[::]:443"); /[*wit
[1]

nout SO_REU
n SO_REUSE

POR]

n SO_REUSE

SEPORT. Succeed. */

. Succeed. */

POR]

* Needed to ensure the cache was cleared
 Workaround with bind(*:443) with SO_REUSEPORT

enabled

[1] Bug fixed in

https://lore.kernel.org/lkml/20200601174049.377204943@lin

", Still Succeed */

uxfoundation.org/

/net/ipv4/inet connection sock.c

spin_lock bh(&head->lock);

if ((tb->fastreuse > @ && reuse) ||
sk_reuseport _match(tb, sk))

goto success;
// ™" always true

if (inet_csk bind conflict(sk,
tb, true, true))
goto fail unlock;

}

https://lore.kernel.org/lkml/20200601174049.377204943@linuxfoundation.org/

bpt sk select reuseport vsbpf sk lookup

» sk _lookup: also allows to pickup a TCP listening or unconnected UDP socket
» https://lwn.net/Articles/825103/

* Overlap in some of the motivations
sk _select reuseport IS associated with the address for the socket family

sk _lookup onthe other hand decouples IP from Socket - lets it pick any / netns

Marwan Fayed, Lorenz Bauer, Vasileios Giotsas, Sami Kerola, Marek Majkowski, Pavel Odintsov, Jakub Sitnicki, Taejoong Chung, Dave Levin, Alan Mislove, Christopher A.
Wood, and Nick Sullivan. 2021. The ties that un-bind: decoupling IP from web services and sockets for robust addressing agility at CODN-scale. In Proceedings of the 20217

ACM SIGCOMM 20217 Conference (SIGCOMM '21). Association for Computing Machinery, New York, NY, USA, 433-446.

https://lwn.net/Articles/825103/

Part |l: Stateless routing of TCP packets from XDP to
L7 applications

Traffic Infrastructure @ FB

Load-balances Load-balances across
across L7 proxies application servers

User connections

terminated at Edge qC) GC) w7 HHVM
(@) (@)
o 2 > .
2 £ django
o :
g ae Long-lived -‘:
D connections MQTT
Load Load App. servers
Balancers Balancers PP

Edge PoP Origin DC

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Traffic Infrastructure @ FB

Load-balances across
application servers

Load-balances
across L7 proxies

User connections

terminated at Edge @ v HHVM
_ 2 |
2 django
Long-lived '
Q connections MQTT
Load App. servers
Balancers Balanceys PP

Edge PoP Origin DC

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Routing mechanism within Katran (L4 LB)

Powered by Consistent Hashing

 Employs a variation of the Maglev Hash for Consistent Hashing

» Locally tracks connections for resiliency against backend server changes

int pick host(packet* pkt)
it (is in local cache(pkt))
return local cache[pkt]
return consistent hash(pkt) % server ring

» Highly effective and efficient

Limitations of Consistent Hashing

Tradeoffs between reliability and complexity

3
- 8ize=65537 — Si2e=655373
é 2.5
o
o)) 2
c
4]
_-—
Q 1.5
—
(o]
= 1
Q
Q
—
& 0.5 /
0
0.5 1 1.5 2 2.5

Percent of Failed Backends (%)

(From the Maglev paper [1])

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523-535.

Limitations of Consistent Hashing

Tradeoffs between reliability and complexity

« Highly effective != 100% effective
 Forlong-lived TCP connections, e.g. videos

3
size=65537 — Size=655373

e 25
o
o 2
c
©
-~—
Q 1.3
Ce—
(o]
= 1
Q
Q
—
& 0.5 /

0

0.5 1 1.5 2 2.8

Percent of Failed Backends (%)

(From the Maglev paper [1])

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523-535.

Limitations of Consistent Hashing

Tradeoffs between reliability and complexity

« Highly effective != 100% effective
 Forlong-lived TCP connections, e.g. videos

if (is in local cache(pkt)) _ T sy —— sisegstors
return local cache[pkt] g =
return consistent hash(pkt) % server ring % .
§ 1.5
§ NS e
0

0.5 1 1.5 2 2.5

Percent of Failed Backends (%)

(From the Maglev paper [1])

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523-535.

Limitations of Consistent Hashing

Tradeoffs between reliability and complexity

« Highly effective != 100% effective
 Forlong-lived TCP connections, e.g. videos

if (1S in local Cache(pkt)) ‘ Miss on ECMP shuffle * - Size=65537 —— size=655373
return local cache[pkt] % 25
return consistent hash(pkt) % server ring % 2
S 15
5
fé 1
S
a RS s
0

0.5 1 1.5 2 2.5

Percent of Failed Backends (%)

(From the Maglev paper [1])

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523-535.

Limitations of Consistent Hashing

Tradeoffs between reliability and complexity

« Highly effective != 100% effective
 Forlong-lived TCP connections, e.g. videos

if (15 in local Cache(pkt)) : Miss on ECMP shuffle ® - Size=65537 —— size=655373
et ~ € 25
return local_cache[pkt] =
o g o
return consistent_hash(pkt) % server_ring| 2 “*
G 15
"6
Small chance of different server if server_ring changes g 1
a R e
0

0.5 1 1.5 2 2.5

Percent of Failed Backends (%)

(From the Maglev paper [1])

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523-535.

Limitations of Consistent Hashing

Tradeoffs between reliability and complexity

« Highly effective != 100% effective
 Forlong-lived TCP connections, e.g. videos

1F (15 in local CaChe(pkt)) ‘ Miss on ECMP shuffle " size=65537 —— size=655373
return local cache[pkt] £, =
return consistent hash(pkt) % server ring % 2
5 1.5
5
Small chance of different server if server_ring changes § 1
é 0.5 /
“Continuous release” of L4 and L7 hurts b—2 4 8 § B
overa I I re I ia b| I |ty ® Percent of Failed Backends (%)
Sharing connection states across hosts (From the Maglev paper [1])

adds complexity

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523-535.

Not anissue for QUIC

Embed routing info in the packet

* QUIC specification [RFC 9000] allows servers to choose arbitrary connection_id
* Servers can embed routing info in the connection_id

e Clients MUST echo it back

 Enables completely stateless routingin L4

Not anissue for QUIC

Embed routing info in the packet

* QUIC specification [RFC 9000] allows servers to choose arbitrary connection_id

* Servers can embed routing info in the connection_id

e Clients MUST echo it back

 Enables completely stateless routingin L4

e . Whatif we could do the same for TCP?

Stateless routing of TCP packets
Use BPF TCP header options

[PATCH v3 bpf-next 0/9]| BPF TCP header options

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Subject: [PATCH v3 bpf-next 0/9] BPF TCP header options

From: Martin KaFai Lau <kafai@xxxxxx>

Date: Thu, 30 Jul 2020 13:56:57 -0700

Cc: Alexei Starovoitov <ast@xxxxxxxxxx>, Daniel Borkmann <daniel @ xxxxxxxxxxxxx>, Eric Dumazet -
<netdev@xxxxxxxxxxxxxxx>, Yuchung Cheng <ycheng @xxxxxxxxxx>

Smitp-origin-cluster: ftw2c04

o Smitp-origin-hostname: devbig005 .ftw2 facebook.com

e Smitp-origin-hostprefix: devbig

The earlier effort in BPF-TCP-CC allows the TCP Congestion Control
algorithm to be written in BPF. It opens up opportunities to allow
a faster turnaround time in testing/releasing new congestion control
ideas to production environment.

The same flexibility can be extended to writing TCP header option.
It is not uncommon that people want to test new TCP header option

to improve the TCP performance. Another use case is for data-center
that has a more controlled environment and has more flexibility in
putting header options for internal traffic only.

Stateless routing of TCP packets

Use BPF TCP header options

 sock _ops program attached to cgroup

« Gets callback on events suchas L/STEN,
CONNECT, CONN_ESTD etc

 Canreadand write TCP header options on each
end point

[PATCH v3 bpf-next 0/9]| BPF TCP header options

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Subject: [PATCH v3 bpf-next 0/9] BPF TCP header options

From: Martin KaFai Lau <kafai@xxxxxx>

Date: Thu, 30 Jul 2020 13:56:57 -0700

Cc: Alexei Starovoitov <ast@xxxxxxxxxx>, Daniel Borkmann <daniel @ xxxxxxxxxxxxx>, Eric Dumazet -
<netdev@xxxxxxxxxxxxxxx>, Yuchung Cheng <ycheng @xxxxxxxxxx>

Smitp-origin-cluster: ftw2c04

o Smitp-origin-hostname: devbig005 .ftw2 facebook.com

e Smitp-origin-hostprefix: devbig

The earlier effort in BPF-TCP-CC allows the TCP Congestion Control
algorithm to be written in BPF. It opens up opportunities to allow
a faster turnaround time in testing/releasing new congestion control
ideas to production environment.

The same flexibility can be extended to writing TCP header option.
It is not uncommon that people want to test new TCP header option

to improve the TCP performance. Another use case is for data-center
that has a more controlled environment and has more flexibility in
putting header options for internal traffic only.

Execution in the datapath

Edge DC

Execution in the datapath

Edge DC

Execution in the datapath

Edge DC

Execution in the datapath

Edge DC

Execution in the datapath

read server_id(); //42
| write_tcp _hdr(42)

SYN-ACK (sid=42)

Edge DC

Execution in the datapath

read server _id(); //42
| write_tcp _hdr(42)

SYN-ACK (sid=42)

Edge DC

Execution in the datapath

parse _tcp hdr()
store_sid()
write tcp hdr(sid)i—_—0

Edge DC

Execution in the datapath

parse _tcp hdr()
store_sid()
write tcp hdr(sid)i——0

Edge DC

Execution in the datapath

Edge DC

Overhead in the data-path

Data overhead

struct tcp opt {
uint8 t kind;
uint8 t len;
uint32 t server id;

s // 6-bytes total

Runtime overhead: Parse TCP header for possible server_idin Katran (L4)

Implementation details

Operations

switch (skops->op) {
LISTEN
PASSIVE ESTABLISHED
CONNECT
ACTIVE ESTABLISHED
PARSE HDR _OPT
HDR_OPT_ LEN
WRITE HDR OPT

}

Storage: use bpf_ sk _storage to store server_id per flow within each end-point

Assighnment and propagation of server_id

* An offline workflow assigns and propagates server_id
* Control planes of Katran and Proxygen load them onto their data planes

« Same pipeline for both QUIC and TCP

Total errors due to connection resets for an application
with long lived connections

aseo|al uibag

so(] ||e uo ases|as pajs|dwo)

Results

Limitations

* Only feasible if you control both end points

« Useful for typical setup in Data centers

 Requires embedding the server_id in each TCP packet

« Typically not feasible in external clients for TCP

 Middleboxes and firewalls could drop it as well

Recap

Embed with server_id in TCP hdr for stateless routing

« Completely stateless solution
 No tangible extra cost in terms of CPU / memory

 Alternatives are quite complex

e Share states between hosts

« Embedserver_id infields such as ECR

Questions?

Thank youl!

