
From XDP to Socket
Routing of packets beyond XDP with BPF

Udip Pant
Software Engineer

Martin Lau
Software Engineer

About

About

About

Overview

Part I: Zero downtime restart of L7 service

• Motivation
• Problems with existing approach
• bpf_sk_reuseport for efficiency and

operational wins
Part II: Consistent and stateless routing of
TCP Packets

• Limitations of Consistent Hashing

• Embed server info with BPF TCP
Header options (sock_ops)

Edge PoP

Load
Balancers

Origin DC

Traffic Infrastructure @ FB

App. servers
Ka

tra
n

L7L4
Load

Balancers

Ka
tra

n

L7L4
Long-lived

connections MQTT

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

django

Edge PoP

Load
Balancers

Origin DC

Traffic Infrastructure @ FB

App. servers
Ka

tra
n

L7L4
Load

Balancers

Ka
tra

n

L7L4
Long-lived

connections

User connections
terminated at Edge

MQTT

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

django

Edge PoP

Load
Balancers

Origin DC

Traffic Infrastructure @ FB

App. servers
Ka

tra
n

L7L4
Load

Balancers

Ka
tra

n

L7L4
Long-lived

connections

User connections
terminated at Edge

Load-balances
across L7 proxies

MQTT

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

django

Edge PoP

Load
Balancers

Origin DC

Traffic Infrastructure @ FB

App. servers
Ka

tra
n

L7L4
Load

Balancers

Ka
tra

n

L7L4
Long-lived

connections

User connections
terminated at Edge

Load-balances
across L7 proxies

Load-balances across
application servers

MQTT

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

django

Part I: Routing of packets within a host for Zero
Downtime Restarts

Edge PoP

Load
Balancers

Origin DC

Traffic Infrastructure @ FB

App. servers
Ka

tra
n

L7L4
Load

Balancers

Ka
tra

n

L7L4
Long-lived

connections

User connections
terminated at Edge

Load-balances
across L7 proxies

Load-balances across
application servers

MQTT

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

django

Traditional Restarts

Proxygen1

Proxygen2

ProxygenN

User
conn

Edge PoP

Origin
DC

Katran

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-

Traditional Restarts

Proxygen1

Proxygen2

ProxygenN

User
conn

Edge PoP

Origin
DC

Katran

T0 Tinit Tstart

Draining Period

Tdone

conn.
Proxygen1

Restart
Timeline

Baseline

Zero

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-

Existing
conn.

New
conn.
Possible

routes

Traditional Restarts

Proxygen1

Proxygen2

ProxygenN

User
conn

Edge PoP

Origin
DC

Katran

T0 Tinit Tstart

Draining Period

Tdone

conn.
Proxygen1

Restart
Timeline

Baseline

Zero

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-

Existing
conn.

New
conn.
Possible

routes

Traditional Restarts

Proxygen1

Proxygen2

ProxygenN

User
conn

Edge PoP

Origin
DC

Katran

T0 Tinit Tstart

Draining Period
This Photo by Unknown Author is licensed under CC
BY-SA

Tdone

conn.
Proxygen1

Restart
Timeline

Baseline

Zero

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-

https://commons.wikimedia.org/wiki/File:Flat_restart_icon.svg
https://creativecommons.org/licenses/by-sa/3.0/

Existing
conn.

New
conn.
Possible

routes

Traditional Restarts

Proxygen1

Proxygen2

ProxygenN

User
conn

Edge PoP

Origin
DC

Katran

T0 Tinit Tstart

Draining Period
This Photo by Unknown Author is licensed under CC
BY-SA

Tdone

conn.
Proxygen1

Restart
Timeline

Baseline

Zero

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-

https://commons.wikimedia.org/wiki/File:Flat_restart_icon.svg
https://creativecommons.org/licenses/by-sa/3.0/

Existing
conn.

New
conn.
Possible

routes

Traditional Restarts

Proxygen1

Proxygen2

ProxygenN

User
conn

Edge PoP

Origin
DC

Katran

T0 Tinit Tstart

Draining Period

Now runs the
updated code.

Tdone

conn.
Proxygen1

Restart
Timeline

Baseline

Zero

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-

Existing
conn.

New
conn.
Possible

routes

Traditional Restarts

Proxygen1

Proxygen2

ProxygenN

User
conn

Edge PoP

Origin
DC

Katran

T0 Tinit Tstart

Draining Period

Now runs the
updated code.

Tdone

conn.
Proxygen1

Restart
Timeline

Baseline

Zero

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-

Implications

- Reduced cluster CPU capacity.
- Lower # of instances available.

50
60
70
80
90
100

1 3 5 7 9 11 13 15 17 19 21 23

C
lu

st
er

 C
PU

ca

pa
ci

ty
 [%

]

Timeline [minutes]

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Implications

- Reduced cluster CPU capacity.
- Lower # of instances available.

- Slow update speed.
- Unable to “move fast”.

50
60
70
80
90
100

1 3 5 7 9 11 13 15 17 19 21 23

C
lu

st
er

 C
PU

ca

pa
ci

ty
 [%

]

Timeline [minutes]

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

How to release updates while ensuring no
disruptions, zero downtime and fast iterations?

Machine

Socket Takeover (Proxygen restarts)
Accepted

sockets 1-N
Listening
sockets

Proxygenold

23

UDP VIP
sockets

TC
P

U
D

P

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Machine

Socket Takeover (Proxygen restarts)
Accepted

sockets 1-N

SCM_RIGHTS
and CMSG

Proxygenold

24

TC
P

U
D

P

Acc. sockets
N+1-∞

Listening
sockets

Proxygennew

UDP VIP
sockets

TC
P

U
D

P

- Takeover TCP listening and UDP VIP sockets.
- Old instance drains, updated instance

handles new connections.

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Machine

Socket Takeover (Proxygen restarts)
Accepted

sockets 1-N

Proxygenold

25

TC
P

U
D

P

Acc. sockets
N+1-∞

Listening
sockets

Proxygennew

UDP VIP
sockets

TC
P

U
D

P

- Takeover TCP listening and UDP VIP sockets.
- Old instance drains, updated instance

handles new connections.

- Connection state?
- TCP -> Preserved in kernel and old instance.
- UDP -> Application level QUIC state.

Existing
TCP

conns.

New TCP
conns.

Existing & new
QUIC conns.

❌
✓

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

Machine

Socket Takeover (Proxygen restarts)
Accepted

sockets 1-N

Proxygenold

26

TC
P

U
D

P

Acc. sockets
N+1-∞

Listening
sockets

Proxygennew

UDP VIP
sockets

TC
P

U
D

P

- Takeover TCP listening and UDP VIP sockets.
- Old instance drains, updated instance

handles new connections.

- Connection state?
- TCP -> Preserved in kernel and old instance.
- UDP -> Application level QUIC state.

- User-space packet forwarding.
- Coordination between Proxygens within

machine.
- QUIC “ConnectionID” based packet

forwarding.

Existing
TCP

conns.

New TCP
conns.

Existing QUIC
conns.

New QUIC
conns.

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

❌
✓

Overall Socket-Takeover Mechanism
With support for UDP / QUIC

Overall Socket-Takeover Mechanism
With support for UDP / QUIC

COM
PLE

X

• Complex and Fragile process
• A lot of interprocess communication (worse with

UDP)

• What if either of the process crashes?

• Is this socket transferred?

• Potential outages and vulnerabilities

• Root problem:
• The sockets are shared between the old and

the new process.

Issues with the existing Socket-Takeover

• Complex and Fragile process
• A lot of interprocess communication (worse with

UDP)

• What if either of the process crashes?

• Is this socket transferred?

• Potential outages and vulnerabilities

• Root problem:
• The sockets are shared between the old and

the new process.
• 💡Can we avoid sharing the same sockets?

Issues with the existing Socket-Takeover

With SO_REUSEPORT: No consistent routing for UDP packets in a connection during restarts
Issues with the existing Socket-Takeover

Proxygen-old

Kernel

rx-2rx-1rx-0 rx-.. rx-n

Incoming packets

Proxygen-new

• Performance
• Address scaling concerns – such as single threaded

acceptor for UDP

• Root problem:
• SO_REUSEPORT + UDP alone leads to lots of disruptions during

proxygen restart.

Without SO_REUSEPORT: Single thread to multiplex _all_ UDP packets
Issues with the existing Socket-Takeover

Rx

Rx

Rx

Rx

Bottleneck at accepting thread

UDP packets

worker threads

• Performance
• Address scaling concerns – such as single threaded

acceptor for UDP

• Root problem:
• SO_REUSEPORT + UDP alone leads to lots of disruptions during

proxygen restart.

• 💡 How can we keep the inter-socket routing of UDP
packets consistent?

Rx

Rx

Rx

Rx

Bottleneck at accepting thread

UDP packets

worker threads

Without SO_REUSEPORT: Single thread to multiplex _all_ UDP packets
Issues with the existing Socket-Takeover

• Taking a step back and thinking about a generic solution
• Attach a bpf program at socket level (bpf_sk_reuseport)

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

• Taking a step back and thinking about a generic solution
• Attach a bpf program at socket level (bpf_sk_reuseport)

• Generically handle multiple protocols

• Better control on the startup path for a new process on per vip level

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

• Taking a step back and thinking about a generic solution
• Attach a bpf program at socket level (bpf_sk_reuseport)

• Generically handle multiple protocols

• Better control on the startup path for a new process on per vip level
• Performance

• Address scaling concerns – such as single threaded acceptor for UDP with
SO_REUSEPORT

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

• Taking a step back and thinking about a generic solution
• Attach a bpf program at socket level (bpf_sk_reuseport)

• Generically handle multiple protocols

• Better control on the startup path for a new process on per vip level
• Performance

• Address scaling concerns – such as single threaded acceptor for UDP with
SO_REUSEPORT

• Routing control at packet level
• Adjust weight of traffic per cpu

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

• Taking a step back and thinking about a generic solution
• Attach a bpf program at socket level (bpf_sk_reuseport)

• Generically handle multiple protocols

• Better control on the startup path for a new process on per vip level
• Performance

• Address scaling concerns – such as single threaded acceptor for UDP with
SO_REUSEPORT

• Routing control at packet level
• Adjust weight of traffic per cpu

• Flexibility to iterate in future
• Can keep each packet in same CPU, NUMA isolation?

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

• Taking a step back and thinking about a generic solution

Proxygen-old

Kernel

rx-2rx-1rx-0 rx-.. rx-n

Incoming packets

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

• Taking a step back and thinking about a generic solution

Proxygen-old

Kernel

rx-2rx-1rx-0 rx-.. rx-n

Proxygen-new

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Incoming packets

• Taking a step back and thinking about a generic solution

• Attach a bpf program at socket level
Proxygen-old

Kernel

rx-2rx-1rx-0 rx-.. rx-n

BPF Program

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Incoming packets

• Taking a step back and thinking about a generic solution

• Attach a bpf program at socket level
Proxygen-old

Kernel

rx-2rx-1rx-0 rx-.. rx-n

Proxygen-new

BPF Program

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Incoming packets

• Taking a step back and thinking about a generic solution

• Attach a bpf program at socket level
Proxygen-old

Kernel

rx-2rx-1rx-0 rx-.. rx-n

Proxygen-new

BPF Program

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Incoming packets

bpf_sk_select_reuseport(
reuse_md,
reuseport_array,
index,
flags

Dictates process

Dictates socket

• Taking a step back and thinking about a generic solution

• Attach a bpf program at socket level
Proxygen-old

Kernel

rx-2rx-1rx-0 rx-.. rx-n

Proxygen-new

BPF Program bpf_sk_select_reuseport(
reuse_md,
reuseport_array2,
index,
flags

Introducing SK-LB powered by SO_REUSEPORT_SOCKARRAY

Incoming packets

SK-LB powered by SO_REUSEPORT_SOCKARRAY
Better control on the startup path for a new process on per vip level

SK-LB powered by SO_REUSEPORT_SOCKARRAY
Better control on the startup path for a new process on per vip level

• Each thread bind its own socket to port

• No more sharing of sockets!

• Primary consideration is for UDP which
does not have the concept of “one-new-
connection => one-new-socket” like TCP

Address scaling concerns – such as single threaded acceptor for UDP
One socket per thread

No packet drops during restarts
Load ratio = 2

Control host hits limit at 3x traffic; test scales well to > 20x (until CPU saturates)
10x scaling of UDP packet processing ability

Load factor = 1
Load ratio = 2

Load factor = 2
Load ratio = 2

Load factor = 3

Load factor = 10
Load ratio = 2

Load factor = 15
Load ratio = 2

Load factor = 30
Load ratio = 2

Load ratio = 2
Load ratio = 2

10x scaling of UDP packet processing ability

Control:
error_rate=3k/s with 3x load

Test w/ Sk-LB:
error_rate=0.5k/s with 30x load!

Load factor = 1
Load ratio = 2

Load factor = 2
Load ratio = 2

Load factor = 3

Load factor = 10
Load ratio = 2

Load factor = 15
Load ratio = 2

Load factor = 30
Load ratio = 2

Load ratio = 2
Load ratio = 2

Control host hits limit at 3x traffic; test scales well to > 20x (until CPU saturates)

Operational
wins

simplified the overall
process,

no IPC => less failures

Efficiency
wins

10x more efficient for
UDP load

Reliability
wins

no packet drops due
to misrouting of
packets, or race
during TCP 3WH

BPF to rescue
With bpf_sk_reuseport + SO_REUSEPORT_SOCKARRAY

Experience deploying it

• Issues in multi-tenant environment with large
number of sockets in a netns

• Led to spikes in CPU and even host locking

CPU spikes due to spin_lock in bind() path

Experience deploying it

• Issues in multi-tenant environment with large
number of sockets in a netns

• Led to spikes in CPU and even host locking

• bind() impl takes a spin lock to walk a long
hashtable bucket with just port as key alone
(where 443 and 80 are common ports)

head = inet_csk_find_open_port(sk, &tb, &port);
if (!head)
return ret;

…
head = &hinfo->bhash[inet_bhashfn(net, port,
hinfo->bhash_size)];

spin_lock_bh(&head->lock);

inet_bind_bucket_for_each(tb, &head->chain)
if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
tb->port == port)
goto tb_found;

…
tb_found:
if (!hlist_empty(&tb->owners)) {
if (sk->sk_reuse == SK_FORCE_REUSE)
goto success;

if ((tb->fastreuse > 0 && reuse) ||
sk_reuseport_match(tb, sk))
goto success;

if (inet_csk_bind_conflict(sk, tb, true, true))
goto fail_unlock;

}

CPU spikes due to spin_lock in bind() path
/net/ipv4/inet_connection_sock.c

Experience deploying it

• Bug with caching of SO_REUSEPORT in the bind-address
cache

bind("[::1]:443"); /* without SO_REUSEPORT. Succeed. */
bind("[::2]:443"); /* with SO_REUSEPORT. Succeed. */
bind("[::]:443"); /* with SO_REUSEPORT. Still Succeed */
[1]

[1] Bug fixed in
https://lore.kernel.org/lkml/20200601174049.377204943@lin
uxfoundation.org/

spin_lock_bh(&head->lock);
. . .

if ((tb->fastreuse > 0 && reuse) ||
sk_reuseport_match(tb, sk))
goto success;

// ^^ returned true for ::

if (inet_csk_bind_conflict(sk,
tb, true, true))
goto fail_unlock;

}

CPU spikes due to spin_lock in bind() path

/net/ipv4/inet_connection_sock.c

https://lore.kernel.org/lkml/20200601174049.377204943@linuxfoundation.org/

Experience deploying it

• Bug with caching of SO_REUSEPORT in the bind-address
cache

bind("[::1]:443"); /* without SO_REUSEPORT. Succeed. */
bind("[::2]:443"); /* with SO_REUSEPORT. Succeed. */
bind("[::]:443"); /* with SO_REUSEPORT. Still Succeed */
[1]

• Needed to ensure the cache was cleared
• Workaround with bind(*:443) with SO_REUSEPORT

enabled

[1] Bug fixed in
https://lore.kernel.org/lkml/20200601174049.377204943@lin
uxfoundation.org/

spin_lock_bh(&head->lock);
. . .

if ((tb->fastreuse > 0 && reuse) ||
sk_reuseport_match(tb, sk))
goto success;

// ^^ always true

if (inet_csk_bind_conflict(sk,
tb, true, true))
goto fail_unlock;

}

CPU spikes due to spin_lock in bind() path

/net/ipv4/inet_connection_sock.c

https://lore.kernel.org/lkml/20200601174049.377204943@linuxfoundation.org/

bpf_sk_select_reuseport vs bpf_sk_lookup

• sk_lookup: also allows to pickup a TCP listening or unconnected UDP socket
• https://lwn.net/Articles/825103/

• Overlap in some of the motivations

• sk_select_reuseport IS associated with the address for the socket family

• sk_lookup on the other hand decouples IP from Socket – lets it pick any / netns

Marwan Fayed, Lorenz Bauer, Vasileios Giotsas, Sami Kerola, Marek Majkowski, Pavel Odintsov, Jakub Sitnicki, Taejoong Chung, Dave Levin, Alan Mislove, Christopher A.
Wood, and Nick Sullivan. 2021. The ties that un-bind: decoupling IP from web services and sockets for robust addressing agility at CDN-scale. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference (SIGCOMM '21). Association for Computing Machinery, New York, NY, USA, 433–446.

https://lwn.net/Articles/825103/

Part II: Stateless routing of TCP packets from XDP to
L7 applications

Edge PoP

Load
Balancers

Origin DC

Traffic Infrastructure @ FB

App. servers
Ka

tra
n

L7L4
Load

Balancers

Ka
tra

n

L7L4
Long-lived

connections

User connections
terminated at Edge

Load-balances
across L7 proxies

Load-balances across
application servers

MQTT

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

django

Edge PoP

Load
Balancers

Origin DC

Traffic Infrastructure @ FB

App. servers
Ka

tra
n

L7L4
Load

Balancers

Ka
tra

n

L7L4
Long-lived

connections

User connections
terminated at Edge

Load-balances
across L7 proxies

Load-balances across
application servers

MQTT

Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., & Benson, T. A. (2020, July). Zero downtime release: Disruption-free load balancing of a multi-billion user website. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication (pp. 529-
541).

django

Routing mechanism within Katran (L4 LB)

• Employs a variation of the Maglev Hash for Consistent Hashing

• Locally tracks connections for resiliency against backend server changes

int pick_host(packet* pkt)
if (is_in_local_cache(pkt))

return local_cache[pkt]
return consistent_hash(pkt) % server_ring

• Highly effective and efficient

Powered by Consistent Hashing

Limitations of Consistent Hashing
Tradeoffs between reliability and complexity

(From the Maglev paper [1])

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523–535.

Limitations of Consistent Hashing

• Highly effective != 100% effective
• For long-lived TCP connections, e.g. videos

Tradeoffs between reliability and complexity

(From the Maglev paper [1])

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523–535.

Limitations of Consistent Hashing

• Highly effective != 100% effective
• For long-lived TCP connections, e.g. videos

if (is_in_local_cache(pkt))
return local_cache[pkt]

return consistent_hash(pkt) % server_ring

Tradeoffs between reliability and complexity

(From the Maglev paper [1])

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523–535.

Limitations of Consistent Hashing

• Highly effective != 100% effective
• For long-lived TCP connections, e.g. videos

if (is_in_local_cache(pkt))
return local_cache[pkt]

return consistent_hash(pkt) % server_ring

Tradeoffs between reliability and complexity

(From the Maglev paper [1])

Miss on ECMP shuffle

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523–535.

Limitations of Consistent Hashing

• Highly effective != 100% effective
• For long-lived TCP connections, e.g. videos

if (is_in_local_cache(pkt))
return local_cache[pkt]

return consistent_hash(pkt) % server_ring

Tradeoffs between reliability and complexity

(From the Maglev paper [1])

Miss on ECMP shuffle

Small chance of different server if server_ring changes

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523–535.

Limitations of Consistent Hashing

• Highly effective != 100% effective
• For long-lived TCP connections, e.g. videos

if (is_in_local_cache(pkt))
return local_cache[pkt]

return consistent_hash(pkt) % server_ring

Tradeoffs between reliability and complexity

[1] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. 2016.
Maglev: A fast and reliable software network load balancer. In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16). 523–535.

(From the Maglev paper [1])

Miss on ECMP shuffle

Small chance of different server if server_ring changes

• “Continuous release” of L4 and L7 hurts
overall reliability L

• Sharing connection states across hosts
adds complexity

Not an issue for QUIC

• QUIC specification [RFC 9000] allows servers to choose arbitrary connection_id

• Servers can embed routing info in the connection_id

• Clients MUST echo it back

• Enables completely stateless routing in L4

Embed routing info in the packet

Not an issue for QUIC

• QUIC specification [RFC 9000] allows servers to choose arbitrary connection_id

• Servers can embed routing info in the connection_id

• Clients MUST echo it back

• Enables completely stateless routing in L4

• 💡What if we could do the same for TCP?

Embed routing info in the packet

Stateless routing of TCP packets
Use BPF TCP header options

Stateless routing of TCP packets

• sock_ops program attached to cgroup

• Gets callback on events such as LISTEN,
CONNECT, CONN_ESTD etc

• Can read and write TCP header options on each
end point

Use BPF TCP header options

Execution in the datapath

…

DCEdge
ProxygenProxygen

L4 LB

Execution in the datapath

…

DCEdge
ProxygenProxygen

bpf

bpf

L4 LB

bpf

bpf

bpf
bpf

bpf
bpf

Execution in the datapath

…

DCEdge
ProxygenProxygen

bpf

bpf

L4 LB

SYN

Execution in the datapath

…

DCEdge
ProxygenProxygen

bpf

bpf

ch-hash()

L4 LB

SYN

Execution in the datapath

…

DCEdge
ProxygenProxygen

bpf

bpf

read_server_id(); //42
write_tcp_hdr(42)

L4 LB

SYN
ch-hash()

SYN-ACK (sid=42)

Execution in the datapath

…

DCEdge
ProxygenProxygen

bpf

bpf

read_server_id(); //42
write_tcp_hdr(42)

L4 LB

SYN
ch-hash()

SYN-ACK (sid=42)

Execution in the datapath

…

DCEdge
ProxygenProxygen

bpf

bpf

read_server_id(); //42
write_tcp_hdr(42)SYN-ACK (sid=42)parse_tcp_hdr()

store_sid()
write_tcp_hdr(sid)

L4 LB

SYN
ch-hash()

Execution in the datapath

…

DCEdge
ProxygenProxygen

bpf

bpf

read_server_id(); //42
write_tcp_hdr(42)SYN-ACK (sid=42)parse_tcp_hdr()

store_sid()
write_tcp_hdr(sid)

payload (sid=42)

L4 LB

SYN
ch-hash()

Execution in the datapath

…

DCEdge
ProxygenProxygen

bpf

bpf

read_server_id(); //42
write_tcp_hdr(42)SYN-ACK (sid=42)parse_tcp_hdr()

store_sid()
write_tcp_hdr(sid)

lookup(42)

payload (sid=42)

L4 LB

SYN
ch-hash()

Overhead in the data-path

Data overhead

struct tcp_opt {
uint8_t kind;
uint8_t len;
uint32_t server_id;

}; // 6-bytes total

Runtime overhead: Parse TCP header for possible server_id in Katran (L4)

Implementation details

switch (skops->op) {
case BPF_SOCK_OPS_TCP_LISTEN_CB:
case BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB:
case BPF_SOCK_OPS_TCP_CONNECT_CB:
case BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB:
case BPF_SOCK_OPS_PARSE_HDR_OPT_CB:
case BPF_SOCK_OPS_HDR_OPT_LEN_CB:
case BPF_SOCK_OPS_WRITE_HDR_OPT_CB:
. . .

}

Storage: use bpf_sk_storage to store server_id per flow within each end-point

Operations

Assignment and propagation of server_id

• An offline workflow assigns and propagates server_id

• Control planes of Katran and Proxygen load them onto their data planes

• Same pipeline for both QUIC and TCP

Total errors due to connection resets for an application
with long lived connections

Results

Begin release

C
om

pleted release on all D
cs

Limitations

• Only feasible if you control both end points

• Useful for typical setup in Data centers

• Requires embedding the server_id in each TCP packet

• Typically not feasible in external clients for TCP

• Middleboxes and firewalls could drop it as well

Recap

• Completely stateless solution

• No tangible extra cost in terms of CPU / memory

• Alternatives are quite complex

• Share states between hosts

• Embed server_id in fields such as ECR

Embed with server_id in TCP hdr for stateless routing

Questions?

Thank you!

