
DSA switches: domesticating a savage beast

Vladimir Oltean

vladimir.oltean@nxp.com

Abstract

The DSA subsystem was originally built around Marvell de-
vices, but has since been extended to cover a wide variety of
hardware with even wider views of their management model.
This paper uses the DSA architecture overview [1] as a primary
source and discusses the changes in DSA that took place in the
last years for this wide variety of switches to offer more ser-
vices, and in a more uniform way, to the larger network stack.
Summarized, these changes are:

• Acknowledging switches which only have DSA tags for
control plane packets, and modifying the bridge driver to ac-
cept termination of data plane packets from these switches.

• Support for unoffloaded upper interfaces.
• Support for more cross-chip topologies than the basic daisy

chain, while maintaining the basic principle that network
interfaces under the same bridge can forward from one to
another, and interfaces under different bridges don’t.

Keywords
DSA, bridge, switchdev, offloading, cross-chip bridging, im-
precise RX, TX forwarding offload, RX filtering.

The data plane and the control plane
The original DSA architecture, seen in figure 1, has remained
unchanged to this day. It stipulates that one virtual network
interface should be exposed for each front-facing switch port,
and no virtual network interface should be exposed for the
ports facing inwards (CPU ports, DSA/cascade ports). DSA
network interfaces should not only be conduit interfaces for
retrieving ethtool statistics and registering with the PHY li-
brary, but they should be fully capable of sending and receiv-
ing packets. This is accomplished via the DSA tagging pro-
tocol drivers, which are hooks in the RX and TX path of the
host Ethernet controller (the DSA master) which multiplex
and demultiplex packets to/from the correct virtual switch in-
terface based on switch-specific metadata that is placed in the
packets.

In this model, the basic function of a network switch from
a hardware designer’s perspective, which is to switch packets,
is an optional feature from the Linux network stack’s perspec-
tive, and was added years after the original design had been
established. This is one of the first major hurdle software en-
gineers need to get over when starting development in this

Figure 1: Overview of packet flow with DSA switches

area: DSA is not simply a switch driver, it is a networking
driver framework, which first and foremost needs to cater to
the most basic network connectivity needs, and which has op-
tional hardware acceleration features.

Behind the seemingly uniform implementation of DSA
tagging protocols and switch drivers, which are tightly man-
aged by the DSA framework, lie many differences and sub-
tleties that make the feature set exposed by two different DSA
switches to the network stack very different.

The majority of network switches capable of management
have some sort of distinction between the data plane packets
and the control packets. These different flows, detailed in fig-
ure 2 as well as below, are superimposed on top of the same
hardware ports. For this reason, even if control and data pack-
ets travel through the same Ethernet ports, it may be helpful
to visualize them three dimensionally to understand the key
differences.

Figure 2: DSA control plane vs data plane

At the most basic level, control packets, which must be
used for link-layer control protocols like STP, PTP, EAP, have
the ability to target a specific egress port and to override its
STP state (inject into a BLOCKING port). These packets typ-
ically bypass the forwarding layer of the switch and the frame
analysis stage of the ingress (CPU) port and are injected di-
rectly into the egress port. The implications are that metadata
such as QoS class and VLAN ID must be specified by the op-
erating system driver directly as part of the DSA tag, and that
hardware address learning is not performed on the CPU port.

On the opposite side of the spectrum, data plane packets
do not perform STP state override, are subject to hardware
address learning on the CPU port, but also cannot be steered
towards a precise destination port, since they are also subject
to the forwarding rules of the switch. The format of these
packets might vary from a special bit in the DSA tag which
marks them as subject to forwarding, to the complete absence
of a DSA tag. For these packets, the CPU port acts like any
other bridge port.

At the extreme, there exists a DSA_TAG_PROTO_NONE
tagging protocol, which admits defeat and does not attempt to
multiplex/demultiplex virtual switch interfaces from the DSA
tag, and all network I/O through such a switch takes place
through the DSA master which is seen as a switched end-
point. The network interfaces registered for the switches are
only used for control operations (ethtool, PHY library) and
are ”dead” to the network stack both for control plane and for
data plane packets. These are the ”unmanaged” switches.

Finally, in some switch designs, injecting a control packet
is an expensive operation which cannot be sustained at line
rate, and the bulk of the traffic (the data plane packets) should
be injected, from the hardware designer’s perspective, di-
rectly through the DSA master interface, with no DSA tag.
These are the ”lightly managed” switches, and their virtual
DSA interfaces are similarly ”dead” to the network stack ex-
cept for link-local packets.

The most basic and common approach with this type of

hardware is to simply set up a user space configuration to
perform the traffic termination from the switching domain on
the DSA master itself. For some packets to target a single
switch port, the user is required to install a bridge VLAN on
the switch port which is egress-tagged towards the CPU port,
then create an 8021q upper with the same VLAN ID on top of
the DSA master, and send/receive traffic through the 8021q
upper of the DSA master. This approach is, however, un-
desirable for two reasons. First, DSA_TAG_PROTO_NONE
is the only tagging protocol which needs special treatment
from user space, which hurts the DSA framework’s goal
in exposing a uniform set of commands for user interac-
tion. Second, it is inherently impossibile to run control pro-
tocols for this switch - that would fundamentally require
a tagging protocol which is not DSA_TAG_PROTO_NONE.
Attempting to fix that, and making the switch network in-
terfaces be capable of traffic but only for control proto-
cols, by creating a specific tagging protocol which behaves
as DSA_TAG_PROTO_NONE for data packets, creates yet
another road block: bridging DSA interfaces with non-
DSA (foreign) interfaces is impossible, which is an impor-
tant use case for boards with a switch and a Wi-Fi AP
(home routers). Interfaces that are DSA masters cannot be
added to a bridge either (they can only as long as they use
DSA_TAG_PROTO_NONE [2]).

A slightly better integrated way of achieving the same re-
sult is the relatively new software-defined DSA tagging pro-
tocol named tag_8021q, which can bring both the lightly
managed and unmanaged switches closer to the user model
exposed by DSA switches with hardware support for a DSA
tagging protocol.

The tag_8021q protocol is fundamentally still sending
data plane packets from the perspective of the hardware, so
there are things it cannot accomplish, like STP state over-
ride. Therefore, tag_8021q must always be augmented
by switch-specific methods of injecting and extracting con-
trol packets in order to offer full functionality, and for this
reason, this tagging protocol is offered as library code and
not a full drop-in solution. Additionally, the DSA framework
has traditionally not enforced any meaningful distinction be-
tween data plane and control plane packets, since originally,
the assumption was that all packets injected by the software
network stack should be control packets.

To unify the hardware and the software notions, and to
use these chips in the way they were meant to, the net-
work stack must be taught about data plane packets. The
tag_8021q model breaks down when DSA switch inter-
faces offload a VLAN-aware bridge, which is in fact their pri-
mary use cases. This is because the source port of the switch
cannot be retrieved based on the VLAN ID by the tagging
protocol driver on RX, because the VLANs are under the con-
trol of the bridge driver, not DSA, and there is no guarantee
that a VLAN is uniquely installed on a single switch port. So
bridging with foreign interfaces becomes equally impossible.

The decisive changes which made these switches correctly
offload a VLAN-aware bridge come in the form of not at-
tempting to report a precise source port on RX for data plane
packets, just a plausible/imprecise one. As long as some re-
quirements inside the software bridge’s ingress path are sat-

isfied (valid STP state, VLAN ID from the packet is in the
port’s membership list), the bridge is happy to accept the
packet as valid, and process it on behalf of the imprecise DSA
interface that was reported.

Complications arise due to the fact that the software bridge
might learn the MAC SA of these packets on a potentially
wrong port, and deliver those packets on the return path to-
wards the wrong port. Additionally, due to bandwidth con-
straints, DSA interfaces do not synchronize their hardware
FDB with the FDB of the software bridge, so the software
bridge does not have an opportunity to figure out the real
source port of imprecise packets.

To give DSA the chance to right a wrong, the bridge driver
was modified to support TX forwarding offload [8]. With
this feature, the software bridge avoids cloning an skb which
needs to be flooded to multiple ports, and sends only one copy
of the packet towards a single network interface from each
”hardware domain” that the flooded packet must reach. The
port driver is responsible with looking up its hardware FDB
for that packet and replicate the packet as needed. This is
a useful feature in itself, because with switches with a large
port count, multicast traffic on the bottlenecked link between
the DSA master and the CPU port is reduced, and packets are
replicated inside the hardware. But with the lightly-managed
and unmanaged switches, it makes the imprecise RX work
correctly, since the TX is also imprecise. So even though
the software bridge did learn the MAC SA of the packets on
the wrong source port, that source port is in the same hard-
ware domain with the right port, and even though the software
FDB is incorrect, the hardware FDB isn’t. So DSA drivers for
lightly-managed and unmanaged switches have a chance to
properly terminate traffic on behalf of a VLAN-aware bridge,
in a way that is compatible with bridging with foreign in-
terfaces, and with a user space interaction procedure that is
much more uniform with DSA drivers that always send and
receive packets with a DSA tag.

Unoffloaded software upper interfaces
Support for unoffloaded upper interfaces running on top of
DSA switch ports, such as the bridge, VLAN, macvlan, bond-
ing interfaces, has always been baked into DSA’s core archi-
tecture. Surely, it came at a high cost, which is to not use
the hardware to its full potential. However, this feature got
broken when switchdev was created and DSA was integrated
with it in order to offer hardware offload for the Linux bridge.
This section details the changes made to switchdev in order
for DSA to regain this functionality.

Recently, DSA has also gained support for offloading other
virtual network interfaces than the Linux bridge. These are
the hsr driver (which supports the HSR and PRP industrial re-
dundancy protocols) [5] and the bonding/team drivers (which
support the link aggregation protocol) [6].

Not all switches are capable of offloading hsr and
team/bonding, and DSA’s policy is to fall back to a software
implementation when hardware offload cannot be achieved:
the bandwidth to/from the CPU is often times good enough
that this is not impractical.

However, DSA’s policy could not be enforced right away
with the expected results, due to two roadblocks that led to

further changes in the kernel code base.
To not offload an upper interface means for DSA that the

physical port should behave exactly as it would if it was a
standalone interface with no switching to the others except
the CPU port, and which is capable of IP termination.

But when the unoffloaded upper interface (the software
LAG) is part of a bridge, the bridge driver makes the incor-
rect assumption that it is capable of hardware forwarding to-
wards all other ports which report the same physical switch
ID. Instead, forwarding to/from a software LAG should take
place in software. This has led to a redesign of the switchdev
API, in that drivers must now explicitly mark to the bridge the
network interfaces that are capable of autonomous forward-
ing [7]; the new default being that they aren’t. In the new
model, even if two interfaces report the same physical switch
ID, they might yet not be part of the same hardware domain
for autonomous forwarding as far as the bridge is concerned.

The second roadblock, even after the bridge was taught
to allow software forwarding between some interfaces which
have the same physical switch ID, was FDB isolation in DSA
switches. Up until this point, the vast majority of DSA
drivers, as well as the DSA core, have considered that it is
enough to offload multiple bridges by enforcing a separation
between the ports of one bridge and the ports of another at the
forwarding level. This works as long as the same MAC ad-
dress (or MAC+VLAN pair, in VLAN-aware bridges) is not
present in more than one bridging domain at the same time.
This is an apparently reasonable restriction that should never
be seen in real life, so no precautions have been taken against
it in drivers or the core.

The issue, described in figure 3, is that a DSA switch is
still a switch, and for every packet it forwards, regardless of
whether it is received on a standalone port, a port under a
VLAN-unaware bridge or under a VLAN-aware one, it will
attempt to look up the FDB to find the destination. With
unoffloaded LAGs on top of a standalone DSA port, where
forwarding between the switched domain and the standalone
port takes place in software, the expectation that a MAC ad-
dress is only present in one bridging domain is no longer true.
From the perspective of the ports under the hardware bridge,
a MAC address might come from the outside world, whereas
from the perspective of the standalone ports, the same MAC
address might come from the CPU port. So without FDB
isolation (which is a hardware-specific mechanism by which
FDB lookups performed on a source port are made to not
match on FDB entries pointing towards a port that is not in
the same hardware forwarding domain), the standalone port
might look up the FDB for a MAC address and see that it
could forward the packet directly to the port in the hardware
bridge domain, where that packet was learned by the bridge
port, shortcircuiting the CPU. But the forwarding isolation
rules put in place will prevent this from happening, so pack-
ets will be dropped instead of being forwarded in software.

Individual drivers have started receiving patches for FDB
isolation between standalone ports and bridged ports, but it is
possible to conceive real life situations where even FDB iso-
lation between one bridge and another must be maintained.
Since the DSA core, at the time of writing, does not enforce
FDB isolation through its API and many drivers already have

Figure 3: Pinging between two stations connected by DSA
using software forwarding

been written without it in mind, it is to be expected that many
years pass until DSA drivers offer a uniform set of services to
upper layers in this regard. Even with the core DSA frame-
work in place, driver writers still are responsible for finding
(sometimes creative) ways of isolating FDB lookups between
ports that are standalone and ports that are members of a
bridge, as well as between ports that are members of dif-
ferent bridges. The solutions can vary between cropping a
range of VLAN IDs to be used for isolating VLAN-unaware
bridges, and restricting the user to only create a single VLAN-
aware bridge if VLANs of one bridge cannot be isolated from
VLANs of another, to using hardware specific Filtering Iden-
tifiers (FID) which remap the same VLAN IDs from packets
to different internal VLAN structures from the 4K space, de-
pending on the bridging domain they belong to, to remapping
VLANs to an internal space larger than 4K.

RX filtering
In the context of DSA, RX filtering refers to the technique of
teaching switches which addresses must be filtered towards
the host and delivered to the CPU ports. There are multiple
possible ways to force a certain {MAC DA, VLAN ID} pair
to be sent towards the CPU, either by installing an FDB entry
in hardware, or by installing an ACL rule if the switch has a
programmable TCAM.

Even if no such thing as a MAC address for a switch port
exists, DSA network interfaces have MAC addresses of their
own, since they are also capable of termination, not just for-

warding. By default, that MAC address is inherited from
the DSA master’s MAC address, with an option to override
the address of each port from other sources like the device
tree. Traditionally, DSA has not configured the switches in
any way so as to make sure that packets destined towards the
switch ports’ addresses, or the DSA master’s address, or a
bridge upper interface’s address, are really filtered only to-
wards the host.

The end result varies depending on the exact hardware
switch implementation, but the typical case is that of a fully
managed switch, whose tagging driver sends only control
packets. If the switch is configured to not perform hardware
address learning for the MAC SA from those control pack-
ets, or if it outright cannot do it, then rules that match on host
addresses are simply absent from hardware. Therefore, the
packets destined for the host are reaching it via flooding. The
host is not the only flooding destination however, however,
these packets are flooded towards all other ports that are in
the same bridging domain with the ingress port. There was a
desire to change this behavior.

It turns out that addresses corresponding to interfaces on
the host are not the only addresses that the switch must send
to the CPU via a non-flooding based mechanism. There are
many kinds of use cases where DSA switch ports are in a
bridging domain with ”foreign” (non-DSA) interfaces. A typ-
ical example is a Wi-Fi AP interface, which is in the same
bridging domain with a DSA switch that handles the LAN
ports. This topology can be seen in many home Wi-Fi routers
running OpenWRT. Here, the effects of not having hardware
address learning on the CPU port can be much more disas-
trous [9]. The root of the Wi-Fi roaming issue can be summa-
rized as follows: if a station used to be learned by the switch
on a certain port, but then migrates to another port which is
in the switch’s blind spot (such as behind the CPU, where
no hardware address learning takes place), then the stale ad-
dress will cause packet loss until it expires, and it may take
many minutes until it does age out. There was also a desire
to change this behavior.

Furthermore, taking FDB isolation into consideration,
standalone ports (ports not offloading any interface) should be
placed by drivers in a hardware FDB partition where no learn-
ing takes place, and packets are flooded towards their only
possible destination (the CPU port). So there is no immedi-
ate need to implement IFF_UNICAST_FLT for standalone
ports in DSA, it is only bridge ports that have a problem.

After gathering all requirements, the conclusion was that
the problem needs to be addressed at the bridge level, and
DSA became much tighter integrated with the software FDB
of the bridge, by sniffing for two classes of FDB entries and
offloading them as FDB entries towards its CPU ports:

• FDB entries learned on foreign interfaces in the same
bridging domain as a DSA switch interface. This solves
the Wi-Fi roaming issue by introducing an opt-in ”assisted
learning on the CPU port” feature which replaces the hard-
ware alternative [10].

• FDB entries that are local/permanent. The bridge marks
the MAC address of each bridge port as a local address, and
the same goes for the bridge’s own MAC address. By of-

floading these entries, packets targeted towards the bridge
itself are no longer flooded in the entire bridging domain
[11].

The ultimate goal of RX filtering in DSA is to mark the
CPU port as not being part of the flooding domain of the
switch. Ideally, all packets that reach the host should reach
it with a good reason, and not rely on software to drop them
if they are not needed, since this wastes precious CPU cycles.
Disabling flooding towards the CPU (neither unicast nor mul-
ticast) is not something possible today due to several reasons.

A limitation that is still present is the case where the bridge
network interface has upper interfaces of its own (for example
an 8021q upper), and these interfaces do not have the same
MAC address as the bridge itself. Since the bridge driver does
not implement IFF_UNICAST_FLT, the network stack will
make this interface promiscuous. Packets coming from the
hardware DSA side will still reach this interface via flooding,
but with the same limitations as before. To address this lim-
itation, the dev_uc_add API must be extended to include
a VLAN ID as well, then the bridge driver must be modi-
fied to implement IFF_UNICAST_FLT and add the MAC
addresses of its upper interfaces as FDB entries that are lo-
cal/permanent (point towards the bridge). This way, DSA and
other switchdev drivers will receive the information they need
to have a known destination for these virtual interfaces.

Another case in which flooding towards the CPU cannot
simply be disabled is when DSA ports are in a bridge with
foreign interfaces. Even if no local interface needs the pack-
ets, a station associated with the Wi-Fi AP might.

Switch topology changes
Traditionally, the cross-chip setups supported by DSA have
been daisy chains, where all switches except the top-most one
lack a dedicated CPU port, and are simply cascaded towards
an upstream switch. There are two new switch topologies
supported by DSA now.

Figure 4: A disjoint tree setup consisting of NXP LS1028A
internal switch ports acting as DSA masters for SPI-
connected external switches

The first is the disjoint tree topology from figure 4. A DSA
tree is comprised of all switches directly connected to each
other which use a compatible tagging protocol (one switch
understands the packets from the other one, and can push/pop
them as needed). Disjoint trees are used when DSA switches
are connected to each other, but their tagging protocols are
not compatible. As opposed to one switch understanding an-
other’s, tag stacking takes place, so in software, more than
one DSA tagging protocol driver needs to be invoked for
the same packet. In such a system, each switch forms its
own tree. Disjoint trees were already supported, but the new
changes also permit some hardware forwarding to take place
between switches belonging to different trees. For example,
be there an embedded 5 port DSA switch that has 2 exter-
nal DSA switches connected to 2 of its ports. Each embed-
ded DSA switch interface is a DSA master for the external
DSA switch beneath it, and there are 3 DSA disjoint trees in
this system. For a packet to be sent from external switch 1
to external switch 2, it must be forwarded towards the CPU
port. In the most basic configuration, forwarding between
the two external switches can take place in software. How-
ever, it is desirable that the embedded DSA switch that is a
master of external switches 1 and 2 can accelerate the for-
warding between the two (because the external switches are
tagger-compatible, they are just separated by a switch which
isn’t tagger-compatible with them). Under some conditions,
this is possible as long as the embedded DSA switch still
has some elementary understanding of the packets, and can
still forward them by MAC DA and optionally VLAN ID,
even though they are DSA-tagged. With the vast majority of
DSA tagging protocols, the MAC DA of the packets is not
altered even when a DSA tag is inserted, so the embedded
DSA master can sanely forward packets between one exter-
nal switch and another. This is one of the only special cases
where DSA master interfaces can be bridged (they are part
of a separate bridge compared to the external switch ports),
because in this case, the DSA masters are part of a bridge
with no software data plane, just a hardware data plane. The
second requirement is for both the embedded and the exter-
nal switches to have the same understanding of what consti-
tutes a data plane packet, and what constitutes a control plane
packet: STP packets received by the external switch should
not be flooded by the embedded switch. Due to the same rea-
son that the embedded switch must still preserve an elemen-
tary understanding of the MAC DA of packets tagged with
the external switch’s tagging protocol, this will also be the
case, since typical link-layer protocols have unique link-local
multicast MAC addresses.

For this topology, the necessary changes were to permit
cross-chip bridging between ports belonging to different DSA
trees, and to allow certain DSA masters to be bridge ports as
long as no software forwarding is required [3].

The second is the H tree topology [4], described by fig-
ure 5. In such a system, there are multiple switches laterally
interconnected through cascade ports, but to reach the CPU,
each switch has its own dedicated CPU port. It turns out that
to support such a system, there are two distinct issues.

First, with regard to RX filtering, an H tree topology is very
similar in challenges to a single switch with multiple CPU

Figure 5: A H-tree topology consisting of two switches, each
having its own CPU port, but also a cascade port for au-
tonomous forwarding towards the other switch

ports. Hardware address learning on the CPU port, if at all
available, is of no use and leads to addresses bouncing and
packet drops. All MAC addresses which need to be filtered to
the host need to be installed on all CPU ports as static FDB
entries. This has led to the extension of the bridge switchdev
FDB notifiers to cover FDB entries that are local to the bridge,
and which should not be forwarded.

Secondly, in an H topology it is actually possible to have
packet loops with the TX forwarding offload feature enabled,
because TX data plane packets sent by the stack to one switch
might also be flooded through the cascade port to the other
switch, where they might be again flooded to the second
switch’s CPU port, where they will be processed as RX pack-
ets. Currently, drivers which support this topology need to
be individually patched to cut RX from cascade ports that
go towards switches that have their own CPU port, because
the DSA driver API does not have the necessary insight into
driver internals as to be able to cut forwarding between two
ports only in a specific direction.

Future changes
One of the most important features still absent from DSA is
the support for multiple CPU ports. However, with many
roadblocks such as basic RX filtering support now out of the
way, this functionality will arrive sooner rather than later. A
possible implementation of multiple CPU ports should follow
several requirements.

First of all, when there are multiple CPU ports there are
multiple DSA masters, and DSA has gained the ability for
the tagging protocol to be changed at runtime, by writing the
new tagging protocol’s name into the dsa/tagging sysfs
file of the DSA master. But since both DSA masters attach
to the same DSA tree, asymmetric DSA tagging protocols
should not be permitted; all DSA masters should use the same
protocol, since this might have undesirable effects for other
switches in the same tree.

DSA should preserve its current default configuration,
meaning that it should not use multiple CPU ports by default,
but pick the first CPU port and keep the other one as inactive.

At the very least, user space should be able to create a static

assignment between a user port and the DSA master interface
that services it, using a rtnetlink attribute. Device tree de-
scriptions are not welcome since they should only describe
the hardware ability, not the configuration. Furthermore, the
kernel should provide the means but not enforce the policy.

Configuring the CPU ports in a link aggregation group is
also a common use case which should be permitted by the
design. While the network is down, the DSA masters can be
added by user space to a bonding or team interface, and DSA
ports can be statically assigned to use that bonding interface
as the DSA master. Transmission from software towards the
switch is balanced in software, while transmission from the
switch towards the CPU is balanced by a hardware LAG that
is the mirror image of the bonding interface.

There is also the emerging topic of Ethernet controllers as
DSA masters that are aware of the DSA switches beneath
them, which is typical when both the switch and the Ethernet
controller are made by the same silicon vendor. Right now
DSA can freely inherit all master->vlan_features,
such as TX checksumming offloads, but this does not work
for all switch and DSA master combinations, so it must be
refined and only the known-working master and switch com-
binations inherit the extra features.

On the same topic of DSA-aware masters, SR-IOV ca-
pable masters are expected to still work when attached to a
DSA switch, but the network stack’s model of this use case
is unclear. VFs on top of a DSA master should be treated
as switched endpoints, but the VF driver’s transmit and re-
ceive procedures do not go through the DSA tagging protocol
hooks, and these packets are therefore DSA-untagged. So
hardware manufacturers have the option of inserting DSA
tags in hardware for packets sent through a VF that goes
through a DSA switch. It is unclear, however, according to
which bridging domain are these VFs being forwarded. An
effort should be made to standardize the way in which the
network stack treats these interfaces. It appears reasonable
that DSA switches might have to register virtual network in-
terfaces that are facing each VF of the master, in order to en-
force their bridging domain, but this makes the DSA master
and switch drivers closely coupled.

On the other hand, letting other code paths than the DSA
tagging protocol driver inject packets into the switch risks
compromising the integrity of the hardware, which is an is-
sue that currently exists and needs to be addressed.

The case for network interfaces for the CPU
ports

The DSA architecture mandates that ports which are unable
of terminating traffic in a meaningful way do not get network
interfaces associated with them. One example is the CPU
port: attempting to ping on the interface associated with that
would mean that a packet is sent towards the inside of the
system, in a loopback of sorts.

On the other hand, there has always been the argument of
needing network interfaces associated with the shared (CPU
and DSA) ports for the ability to retrieve statistics counters,
which are a very useful debugging tool. The latter argument
could not win over the former, and other techniques for de-

bugging the DSA shared ports have been developed: devlink
port regions, devlink resources, as well as overlaying the eth-
tool statistics counters of the CPU port on top of the statistics
counters of the DSA master.

Additionally, the PHY library needed a network interface
attached to the PHY, and while the link between the DSA
master and the switch is typically a fixed set of traces on a
PCB, that is not always the case. For example, a Raspberry Pi
might connect using a plain RJ45 cable to a switch evaluation
board. In that case, there are two Ethernet PHYs involved
between the DSA master and the switch, and the PHY library
must manage them. To solve that scenario, the PHY library
and phylink have been modified to be able to instantiate the
state machines in lack of an attached network interface, and
still present the same API towards the MAC side [13].

There have also been attempts to register network inter-
faces for the CPU ports in order to offload tc shapers on them,
to limit the amount of traffic sent to the host [14]. These at-
tempts have been shot down due to the impracticality of in-
stalling an egress shaper as opposed to an ingress policer on
the front-facing ports directly. With an egress shaper, pack-
ets would be eventually dropped due to congestion. With an
ingress policer, they would be dropped early when the band-
width quota is exceeded.

So the architecture has remained unchanged despite the
temptations. However, there might be use cases where net-
work interfaces for the CPU port make the most amount of
sense. Detailed below is one such example, which is pro-
vided for the purpose of contemplating the idea, the usage
model for this new interface, and other consequences. Note
that creating a network interface for the CPU port does not
imply that interfaces are created for cascade ports too, so the
aforementioned use cases for a network interface for hidden
ports should still search for an alternative.

The Time Sensitive Networking (TSN) enhancements to
IEEE 802.1Q and IEEE 802.3 are aiming to transform Eth-
ernet into a viable replacement for the existing buses in au-
tomotive and industrial networking, and are seeing hardware
implementations in a number of recently added DSA switch
drivers. In TSN, the real-time guarantees are obtained by en-
forcing bandwidth reservations and saying ”no” when those
reservations are exceeded. Packets with real-time guarantees
must be able to be transported by the same network that trans-
ports best-effort traffic, and time division based access to the
network is therefore a common approach. To minimize the
latency, the real-time aware endpoints must be synchronized
to the network time via the Precision Time Protocol (PTP), in
order to always send and receive packets in band with their al-
loted time interval, and not have switches delay their packets
until that interval comes.

One of the existing paradigms in TSN is the ”switched end-
point”, a mix between an application terminating some data
in a time-synchronized manner, and a control stack for the
on-board switch, which forwards the data that must not be
terminated locally. At the bare minimum, the switch control
stack must manage a port redundancy protocol and the syn-
chronization protocol.

Such use cases are well suited for a DSA hardware design,
since the endpoint can be a real-time application which opens

a socket on the DSA master, and the switch can be managed
by DSA itself.

There are multiple reasons why a TSN endpoint applica-
tion might want to run on the bare DSA master. First, the
switch might simply have a ”lightly managed” design, and it
might accept DSA-untagged packets just fine.

Second, opening the socket on top of the bridge interface,
or on top of the switch interfaces, would add the extra pro-
cessing overhead of several virtual network interfaces in the
kernel, which would cost a few precious tens of extra mi-
croseconds per packet. DSA and the Linux bridge are simply
not optimized for packet latency.

Third, the DSA master might be well prepared for TSN of-
floads itself, not relying on the TSN offloads of the switch.
The DSA master might itself be synchronized to the PTP
time, it might have a time-aware packet scheduler configured
(standardized as clause ”8.6.8.4 Enhancements for scheduled
traffic” of IEEE 802.1Q-2018, but widely known as IEEE
802.1Qbv). Also, the endpoint application might want to be
as oblivious to the network topology as possible, it should not
need to know which switch port interface to bind its socket to,
binding to the DSA master should be sufficiently agnostic if
the CPU port is viewed as a regular bridged port.

In this model, it would make perfect sense for the CPU
port to have a network interface associated with it. This inter-
face would be capable of traffic, and pinging on the CPU port
would talk to an application doing the same thing but run-
ning on the DSA master. Putting the CPU port interface in a
bridge would decide what happens to DSA-untagged packets
sent by the bare DSA master. It would not affect in any way
what happens with control or data packets injected by DSA
on behalf of the switch network interfaces or on behalf of a
bridge, and packets belonging to those flows would still reach
the CPU port even if that port was not under a bridge, or the
same bridge. In this model, the DSA master could also be an
endpoint (a DSA-unaware one), and the CPU port interface
would be the bridge port that services it.

Nonetheless, there are many reasons why the switched end-
point use case cannot be realized with the existing DSA in-
frastructure today.

• Having the DSA master synchronized to the PTP time
means running two instances of the PTP state machine
on the same system: one for the DSA master, as an end-
point (Ordinary Clock), and one for the switch interfaces,
as a bridge (Boundary Clock). Since the DSA master and
the DSA switch have independent PTP Hardware Clocks
(PHC), the DSA master’s PHC will synchronize itself to
the switch’s PHC. Due to limitations in the PTP user API,
DSA disables PTP timestamping on the master interface
[12]. The PTP user space API would need to be extended,
and timestamps to be annotated with the interface/PHC that
took them, before the DSA master and the switch could
synchronize themselves.

• On TX, it has been established in the sections above that
letting DSA unaware code paths simply inject packets at
will into the switch can be a harmful operation. If crafted
correctly, packets sent from outside DSA-controlled code
paths can even modify state inside the switch (access regis-

ters, etc). It would be desirable that if switch drivers create
a path for DSA-untagged packet flows coming from the
DSA master, those paths are safe.

• On RX, DSA traps all packets received by the DSA master
by default. But allowing a packet reception flow outside of
DSA’s control would mean that the tagging protocol driver
needs to filter out the packets that must be processed by the
DSA master itself, and not by the DSA switch interfaces.
As opposed to the TX flow, where packets coming from
the DSA code paths will be DSA-tagged and packets com-
ing from DSA-unaware code paths will be DSA-untagged,
the same expectation is unreasonable for RX, unless the
switch knows beforehand somehow that some packets sent
towards the CPU must be tagged, and some must not. So
the filtering, as well as tag stripping decision, must take
place in software, inside the DSA tagging protocol driver.
The criterion by which the tagging protocol decides what
packets should be stripped and then left in the hands of the
DSA master is TBD, but could possibly be derived from the
source and destination MAC addresses of the packet (the
DSA master as a switched endpoint would need to have a
different MAC address than the virtual switch interfaces).

While the above might sound like fiction, the NXP
LS1028A SoC targets the above use cases, but the DSA
framework’s restrictions were avoided by using a special
hardware design. Namely, the internal switch present inside
this SoC has two CPU ports, but they are asymmetric in role.
One internal switch port can act as a control port (and the as-
sociated ENETC port is the DSA master), while the other port
is a plain data port, for which DSA registers a user port with a
network interface, and for which the associated ENETC port
is not a DSA master. This can be seen in figure 6.

Figure 6: NXP LS1028A control port and data port

Both switch ports 4 and 5 are CPU ports in the truest sense
of the word: they are inwards-facing ports that lead to the
CPU. However, from DSA’s perspective they play very dif-
ferent roles. The ENETC has its own PHC, and the Felix
switch has its own PHC, and when the control port is physi-
cally separate from the data port, synchronizing the two is not
any more complicated than running:

ptp4l -i eno2 -2 -P -m &
ptp4l -i swp4 -2 -P -m &

Since switch port 4 can be configured by software to act as
either as a control or a data port, and the same goes for switch
port 5, the device tree description becomes challenging. It
is desirable in many use cases that the device tree is no more
than a description of the hardware, since it may be set in stone
with no way of updating it in the field. But when port roles
are customizable, it is tempting to make that customization in
the device tree description itself.

In mainline Linux, the NXP LS1028A has only one inter-
nal switch port described as a CPU port (has an ethernet
phandle to its ENETC pair). The other internal switch port is
declared as a simple data port, or disabled.

But the ethernet phandle might have been just as well
between mscc_felix_port5 and enetc_port3. Ad-
ditionally, the felix driver might gain support for multiple
CPU ports when using the ocelot-8021q tagging proto-
col, and it is desirable that both ports are described as CPU
ports in the device tree when that happens, but also that this
does not break existing use cases when using the normal
ocelot DSA tagging protocol.

It would therefore appear natural for the device tree to de-
scribe a port’s capability of acting as a control interface, and
the definitive device tree description for the LS1028A switch
to have the ethernet properties on both CPU ports. But
the DSA framework could also ask the driver if it wants to
opt in to registering a network interface for CPU ports. In
the case of the Ocelot switch family, which the LS1028A Fe-
lix switch is a part of, DSA-untagged packets received on the
control port are not accepted, so this driver would refuse that
feature. However, in the presence of multiple ethernet OF
properties, DSA currently picks the first one as the CPU port,
and leaves the other ports with this property as CPU ports too,
but they are ”inactive” CPU ports (no dp->cpu_dp pointer
points to them). It would be for this ”inactive” CPU port that
the DSA framework can register a network interface, and this
would effectively yield the same result as the current descrip-
tion where one of the internal switch ports is declared as a
user port.

Moreover, the data port opt-in might have uses beyond
the LS1028A. Fundamentally, the aforementioned ”switched
endpoint” use case is the same as the LS1028A’s use of two
internal ports, except that the packet flows for the control and
data ports are overlaid on top of a single pair of hardware
ports. When the DSA switch is external, it might be wasteful
to connect two Ethernet ports to the system in this way just
for them to play different roles.

Even with a dedicated control port and a dedicated control
port, the NXP LS1028A workaround still has some limita-
tions. It creates a separate hardware path for DSA untagged
packets to exit the system, but this path does not scale. To ex-
plain this, we can return to the example switch topology with
disjoint trees, only this time, inside the LS1028A, both eno2
and eno3 ports are enabled. This is shown in figure 7.

DSA-untagged packets can exit the internal Felix switch,
but attached to the Felix switch are other DSA switches that
expect packets to be tagged with their own switch-specific

Figure 7: The same disjoint tree setup with felix and sja1105,
but with eno2 as a data port

DSA tag. So these packets will be going nowhere, unless we
accept one of the following:
• Similar to SR-IOV network interfaces which are DSA-

aware and can be configured to insert a certain pro-
grammable DSA header in hardware, it is sane for DSA
switch hardware designs to be themselves DSA-aware, and
to insert other switch’s tag formats on egress. In this case,
the Felix switch would need to insert a DSA tag compatible
with the sja1105’s expectations, to allow DSA-untagged
packets coming from eno2 to exit.

• The need for a path for DSA-untagged packets coming
from inside the system to exit the switch is acknowl-
edged at the DSA framework level, and does not need
workarounds such as multiple CPU ports with different
roles. Such a path for DSA-untagged packets can then be
added to the drivers of the downstream switches too, and
packets coming from eno2 can be treated as DSA-untagged
all the way down.
At a minimum, exposing a network interface for the switch

CPU port would allow the PTP protocol to run between the
switch and the DSA master, and would allow the user to
control the forwarding path for DSA-untagged traffic com-
ing from the master or other upstream interfaces. And the
reverse: any attempt to expose interfaces for the hidden ports
needs to answer what are their semantics in terms of packet
I/O, considering that ”no packet I/O” is not a viable option.

Conclusion
This paper attempts to describe the considerations and angles
that should be taken into account when writing DSA switch
drivers, or when modifying the DSA framework. In some
cases the requirements are contradictory, and writing a DSA
driver can be more of a creative process than an objective one
with a clear goal.

Taming DSA switches and making them behave com-
pletely in accordance with the network stack’s expectations

proves to be a much more ambitious challenge than initially
foreseen, thus the fight continues.

References
[1] Distributed Switch Architecture, A.K.A. DSA

https://legacy.netdevconf.info/2.1/papers/distributed-switch-architecture.pdf

[2] net: bridge: reject DSA-enabled master netdevices as bridge members
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=
8db0a2ee2c6302a1dcbcdb93cb731dfc6c0cdb5e

[3] [v4,resend,net-next,0/4] Cross-chip bridging for disjoint DSA trees
http://patchwork.ozlabs.org/project/netdev/cover/20200510163743.18032-1-olteanv@
gmail.com/

[4] [v3,net-next,0/8] NXP SJA1105 driver support for ”H” switch topologies
https://patchwork.kernel.org/project/netdevbpf/cover/20210804135436.
1741856-1-vladimir.oltean@nxp.com/

[5] [net-next,v3,0/4] add HSR offloading support for DSA switches
https://patchwork.kernel.org/project/netdevbpf/cover/20210210010213.
27553-1-george.mccollister@gmail.com/

[6] [v5,net-next,0/5] net: dsa: Link aggregation support
https://patchwork.kernel.org/project/netdevbpf/cover/20210113084255.
22675-1-tobias@waldekranz.com/

[7] [v6,net-next,0/7] Let switchdev drivers offload and unoffload bridge ports at their own convenience
https://patchwork.kernel.org/project/netdevbpf/cover/20210721162403.
1988814-1-vladimir.oltean@nxp.com/

[8] Merge branch ’bridge-tx-fwd’
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=
356ae88f8322066a2cd1aee831b7fb768ff2905c

[9] net: dsa: listen for SWITCHDEV FDB,DEL ADD TO DEVICE on foreign bridge neighbors
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=
d5f19486cee79d04c054427577ac96ed123706db

[10] Merge branch ’offload-software-learnt-bridge-addresses-to-dsa’
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=
c214cc3aa8423ba8e67c7028eeea9b0f48e8a7e6

[11] Merge branch ’dsa-rx-filtering’
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=
7f4e5c5b8cb00138ad1a10cab87bbd1e2d4d3376

[12] net: dsa: Deny PTP on master if switch supports it
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=
f685e609a301f171b62ee52a69acc3a74c2c04aa

[13] [v2,net-next,00/11] Decoupling PHYLINK from struct net device
http://patchwork.ozlabs.org/project/netdev/cover/1559065097-31832-1-git-send-email-ioana.
ciornei@nxp.com/

[14] dsa traffic priorization
https://lore.kernel.org/netdev/20190918140225.imqchybuf3cnknob@pengutronix.de/

