
Towards truly portable eBPF
Itay Shakury & Rafael D. Tinoco
OSS @ Aqua Security

Linux Plumbers 2021

@itaysk
@rafaeldtinoco

Hello
• Tracee – runtime security using eBPF

• Tell our story of building and shipping eBPF application

• Our POV: vendor not user, targeting common users

• Go -> eBPF

• User experience > developer productivity

$ docker run aquasec/tracee

github.com/aquasecurity/tracee

CLI
binary

BPF
sources

libbpf
headers

libelf,
zlib

CLANG/
LLVM make

kernel
headers

Option 1 – all in one image

Challenges:
• Long startup time
• Big image (~155MB)
• Obtain correct headers
• Fragile header discovery

CLI
binary

BPF
sources

libbpf
headers

libelf,
zlib

CLANG/
LLVM make

kernel
headers

CLI
binary

BPF
object

Option 2 – pre-compile

Challenges:
• Adds friction to installation
• Still need to compile BPF, headers
• Deliver artifact to containers
• Management in heterogenous fleet

CLI
binary

Portable
BPF

object

CO-RE

BTF

/sys/kernel/btf/vmlinux

CONFIG_DEBUG_INFO_BTF=y

https://nakryiko.com/posts/bpf-portability-and-co-re/

libbpf

Challenges:
• Portability aches
• libbpf in Go
• BTF prevalence

https://github.com/libbpf/libbpf#bpf-co-re-compile-once--run-everywhere

BTF in the wild

CLI
binary

BPF
object

CO-RE

BTF

/sys/kernel/btf/vmlinux

CONFIG_DEBUG_INFO_BTF=y

libbpf

External BTF

How to load external BTF?

How to generate a BTF?

BTF Generation Script - Ubuntu

CLI
binary

BPF
object

BTF

/sys/kernel/btf/vmlinux

CONFIG_DEBUG_INFO_BTF=y

libbpf

External BTF

debuginfo

pahole

debuginfo

pahole

debuginfo
x.y.z

pahole

BTF
x.y.z

BTF
x.y.z

https://github.com/aquasecurity/btfhub

BTF Hub is open, feel free to engage

https://github.com/kinvolk/inspektor-gadget/pull/221

CO-RE: Challenges

• PORTABILITY

• Kernel memory access

• Diff stack sizes

• Loop unrolling & complexity

• Tail calls

• LIBBPF SUPPORT
• Destroy vs Detach

• Missing legacy kprobes support

• Destroy/detach changes

• BTF RELOCATIONS

• Quick Overview

• BPF ELF Section Headers

• BPF ELF Symbols Table

• Kconfig file dependency

• Kconfig relocations

CHALLENGE: PORTABILITY
(CO-RE and different kernel versions)

CO-RE: Challenges (portability: kernel memory access)

1. LIBBPF NON-CO-RE

• bpf_probe_read(&pid, sizeof(pid), &task->pid);

2. LIBBPF NON-CO-RE + BPF_PROG_TYPE_TRACING (v5.4-rc3)

• pid_t pid = task->pid;

3. LIBBPF CO-RE (same as bpf_probe_read() with __builtin_preserve_access_index())

• bpf_core_read(&pid, sizeof(pid), &task->pid);

4. LIBBPF CO-RE + BPF_PROG_TYPE_TRACING

• __builtin_preserve_access_index() LLVM built-in support: Accesses to aggregate
data structures (structs, unions, arrays) in the argument will have appropriate CO-RE
relocation information generated.

• pid_t pid = __builtin_preserve_access_index(({ task->pid; }));

CO-RE: Challenges (portability: unrolling & complexity)

CO-RE: Challenges (portability: tail calls complexity)

CHALLENGE: LIBBPF SUPPORT
(1:1 libbpfgo & libbpf)

CO-RE: Challenges (libbpf support: link destroy vs detach)
- commit d88b71d4a916 libbpf: remove unused bpf_link’s destroy operation, add dealloc

- mine.go : 97 “invalid argument”:
bpf_link__link_detach() shouldn’t be used directly.

- link->destroy() usage is tricky:

you may disconnect bpf_link and destroy internal
resources only, keeping perf event fd opened and
event enabled.

CO-RE: Challenges (libbpf support: legacy kprobe interface)
- commit 668ace0ea5ab libbpf: use BPF perf link when supported by kernel

DIFFERENT INTERFACES FOR EBPF LINK
ATTACHMENTS TO PROBES AND
TRACEPOINTS:

1. PERF_EVENT_IOC_SET_BPF (attaches
program to existing kprobe tracepoint
event) + PERF_EVENT_IOC_ENABLE
(enables event specified by fd).

2. BPF_LINK_CREATE (for-next tree)

3. LEGACY KPROBE_EVENTS (for-next tree)

CO-RE: Challenges (libbpf support: legacy kprobe interface)
Kernel v4.15 needs eBPF kern_version
attribute (we’re currently supporting v4.19 and
on).

Kernel v4.19 still needs kprobe points to be
added to kprobe_events (legacy kprobe
support to libbpf) – thanks Andrii for reviewing and
accepting it.

Note: Last days Andrii simplified legacy kprobe
code and introduced legacy uprobe support,
besides fixing some issues.

(quick pause: eBPF and relocations)

CO-RE: BPF Section Headers (quick overview)

CHALLENGE: LIBBPF SUPPORT
(kconfig relocations)

CO-RE: Challenges (BPF relocations: kconfig & dead code)

dead code
elimination

kconfig relocation

- Kconfig relocations made with externs and
eBPF map:

- Dead code elimination did not work for <=
v5.4 kernels (constant coming from R/O
map value). Verifier would not allow load
because of bad accesses coming from dead
branch.

Issue: Wasn’t CO-RE

CO-RE: Challenges (BPF relocations: kconfig & dead code)
- Propose the dead code verifier fix to stable

v5.4 branch:

- And fixed the CO-RE issue we had.

- But there is more…
ISSUE FIXED

Wait! This is NEW!

CO-RE: Challenges (BPF relocations: kconfig dependency)
- Libbpf allows specifying kconfig file, but it is

read as extra kconfig options, not a
‘replacement’ for existing kconfig.gz.

- SOLUTION was to create our own
kconfig_map. (approach is like what libbpf does)

SOLUTION

- Libbpf relocations depend on:
- KCFG extern

- /proc/config.gz
- /boot/config-$(uname –r)

- KSYM extern (subsequent slides)

- RAW BTF or ELF with .BTF sec

CHALLENGE: LIBBPF SUPPORT
(ksym relocations in any env)

Tracee with BTF Hub

CLI
Binary

BPF
object

cross-compile BPF

https://github.com/falcosecurity/driverkit/issues/100

Fix the artifact
for the environment
(cross-compilation)

Fix the environment
for the artifact
(external BTF)

bcc/gobpf

libbpfgo

CO-RE

BTF Hub
embedded
BTF

Truly portable eBPF application

✅ Less BTFs

✅ Smaller BTFs

CLI
binary

BPF
object

BTF

/sys/kernel/btf/vmlinux

CONFIG_DEBUG_INFO_BTF=y

libbpf

External BTF

debuginfo

pahole

debuginfo

pahole

debuginfo
x.y.z

pahole

BTF
x.y.z

BTF
x.y.z

My BTF
x.y.1-12

My BTF
x.y.12-16

• https://github.com/aquasecurity/tracee

• https://github.com/aquasecurity/libbpfgo

• https://github.com/aquasecurity/btfhub

• Itay Shakury @itaysk

• Rafael D. Tinoco @rafaeldtinoco

• Yaniv Agman @AgmanYaniv

• Grant Seltzer @GrantSeltzer

Let us know what you think

https://github.com/aquasecurity/tracee
https://github.com/aquasecurity/libbpfgo
https://github.com/aquasecurity/btfhub

TORWARDS TRULLY PORTABLE eBPF
Itay Shakury & Rafael Tinoco
Aqua Security

Linux Plumbers 2021

@itaysk
@rafaeldtinoco

https://nakryiko.com/posts/bpf-portability-and-co-re/
https://nakryiko.com/posts/btf-dedup/
https://lwn.net/Articles/801479/
https://github.com/libbpf/libbpf#bpf-co-re-compile-once--run-everywhere
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md
Fast Packet Processing with eBPF and XDP: Concepts, Code, Challenges and Applications

Images and Icons:
https://commons.wikimedia.org/
https://www.flaticon.com/

References

