O) MKIE

Protocol Tracing with eBPF

September 23, 2021
Omid Azizi, Yaxiong Zhao, Ryan Cheng, John P Stevenson, Zain Asgar

A CNCF sandbox project
CLOUD NATIVE

COMPUTING FOUNDATION

About Me

\S

Hi, I'm Omid

Twitter: @oazizi
Principal engineer at New Relic.
Founding engineer at Pixie Labs (@pixie_run)

Q MXIE

EEEEEEEEEEE

INntroduction

In 2019, we set out to build a no-instrumentation observability platform.
- Our Vision: Help developers understand and debug their K8s apps.

First goal: Trace application network messages.
- HTTP, then other protocols.

We had two key requirements:
(1) No instrumentation: No code modifications, no redeployments.
(2) Low overhead: Always active.

.
Overview L

.

Pixie cloud

No instrumentation + low overhead = eBPF.

Pixie Edge Module (PEM)

General approach:

Query Engine

- Capture data in kernel-space with eBPF.
- Process data in user-space (protocol parsing).
- Store data into tables for querying by user.

Protocol Tracer & Parser
(Stirling)
Focus

O]C t h |S < Se-lt_-rt;;;rl?;ta Traced Data
talk

Linux Kernel ‘
|

\

»rk.withpixie.ai/!

= U AIE cluster: gkeioazizi ~ m @

Traced
HTTP

% script: Scratch Pad ¥ | max_num_records: 1006 ¥ start_time: -5m ¥

Table Traffic
— TIME_ ~ : POD { REMOTE_ADDR : REQ_ME... i REQ_PATH { REQ_BODY : RESP_HEADERS ! RESP... { RESP_BODY
D/ LL]LUL1, 900,10 FIVI DA SUUR-SHUP/ HUIICEIIU ... 1U. 1UZ. 19/.1£0 veioic seart { LUIIECLLUIN. KREEp-... Zuz ~iemuveu.
9/22/2021, 3:58:18 PM px-sock-shop/front-end-.. 10.169.137.128 GET /login { Connection: keep-.. 200 Cookieis sifi
9/22/2021, 3:58:18 PM px-sock-shop/carts-85bf.. 10.169.137.125 GET /carts/57a98d { Connection: close 202 <removed: v
9/22/2021, 3:58:18 PM px-sock-shop/payment-.. 10.169.137.130 POST /paymentAdth { address: { id: .. { Content-Length: 51 200 { authori
9/22/2021, 3:58:18 PM px-sock-shop/shipping-7.. 10.169.137.130 POST /shipping { id: d1fd39fa-87.. { Content-Type: app.. 201 { id: d1f
9/22/2021, 3:58:18 PM px-sock-shop/carts-85bf.. 10.169.137.125 DELETE /carts/57a98d98e4b006... { Connection: close 202 <removed:
9/22/2021, 3:58:18 PM px-sock-shop/carts-85bf.. 10.169.137.125 POST /carts/57a98d98e4b006.. { itemId: 8@8a2de.. { Connection: close 201 { id: 614
9/22/2021, 3:58:18 PM px-sock-shop/orders-7c.. 10.169.137.125 POST /orders { customer: http:.. { Connection: close 201 {"id":"614l
9/22/2021, 3:58:18 PM px-sock-shop/shipping-7.. 10.169.137.130 POST /shipping { id: 2bbfa8d4-97.. { Content-Type: app.. 201 { id: 2bb
9/22/2021, 3:58:18 PM px-sock-shop/orders-7c.. 10.169.137.125 POST /orders { customer: http:.. { Connection: close 201 {'id":"614l
o 9/22/2021, 3:58:18 PM px-sock-shop/carts-85bf.. 10.169.137.125 POST /carts/57a98d98e4b006.. { itemId: @3fef6a.. { Connection: close 201 { id: 614
E]. 9/22/2021, 3:58:18 PM px-sock-shop/carts-85bf.. 10.169.137.125 POST /carts/57a98d98e4b006.. { itemId: 8@8a2de.. { Connection: close 201 { id: 614
0 9/22/2021, 3:58:18 PM 35.191.10.207 GET /healthz { Content-Length: 1.. 200 { lastUpd

Showing 68 - 81 / 1000 records

= | AIE cluster: gkeoazizi ~

I &

start_time: -5m v

script: px/net_flow_graph v namespacex: px-sock-shop v from_entity_filter: ¥ to_entity_filter: ¥ throughput_filter:0.0 v

Net Flow Graph
rabbitma.px-sogk-shop.sve.cluster.local
Automatic
L
Service e e
px-sock-shop/carts-5fc4556) y 7 S
k-shop.sve.clusterlocal
px-so:k-shan/olﬂer5~77557559¢:-p47g; bytes_sent: 40.1 KB/s
bytes_recv: 63.4 KB/s SEuuaems s ear)
/ carts.px-sock-shop.sve.cluster.local
/
/
® /
px»sock~sncp;queuemmer-b‘&dsuk carts-db. px-sock-shop.svc cluster.local
px-sock-shop/shipping-745b9d8755-g8h2k ‘
10.169.136.241
ENABLE HIERARCHY
Table
9 = FROM_ENTITY ~ TO_ENTITY BYTES_SENT BYTES_RECV BYTES_TOTAL
px-sock-shop/carts-5fc45568c4-bvwbs carts-db.px-sock-shop.svc.cluster.local 40.1 KB/s 63.4 KB/s 103.5 KB/s
o px-sock-shop/carts-5fc45568c4-bvwbs kube-dns.kube-system.svc.cluster.local 38.3 B/s 91.7 B/s 138 B/s
0 px-sock-shop/orders-77¢57c89dc-p47gw shipping.px-sock-shop.svc.cluster.local 3.8 KB/s 2.3 KB/s

®

IAIE

script: px/http_data »

Table

=il s
8/4/20...
8/4/20...
8/4/20...
8/4/20...
8/4/20...
8/4/20...
8/4/20...
8/4/20...
8/4/20...
8/4/20...
8/4/20...

8/4/20...

R..

35.191...

10.169....

10.169....

10.169....

10.169....

10.169...

10.169....

10.169....

10.169....

10.169....

10.169....

10.169...

Cluster: gke:oazizi v

max_num_records: 1000

57302

42382

48054

46976

46958

469668

58324

43626

58338

46966

43626

35052

REQ_HEADERS

{
{

A m m s m e s s s e

PxL scripts:
A pandas based
query language

Connection: Keep-alive, Host: 10

:authority: productcatalogservice...

Accept: */%, Accept-Encoding: gzi..

Connection: close, host: user }
Connection: close, host: user }
Connection: close, host: user }

Connection: close, host: carts }

rauthority: productcatalogservice...

Connection: close, host: carts }

Connection: close, host: user }

rauthority: productcatalogservice..

Connection: close, host: catalogu..

GET

GET

GET

GET

GET

POST

GET

GET

POST

GET

R..

/healthz

/hipste...

/produ...

/custo...

/custo...

/carts/...
/hipste...

Jcarts/...

/custo...

/hipste...

/catalo...

VoNOg A WN =

“

PxL Script Vis Spec

Copyright 2818- The Pixie Authors.

#

Licensed under the Apache License, Version 2.8 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.8

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License

#

SPDX-License-Identifier: Apache-2.8

‘"' HTTP Data Tracer

This script traces all HTTP/HTTP2 data on the cluster.

st

mport px

ef http_data(start_time: str, num_head: int):
df = px.DataFrame(table='http_events', start_time=start_time)

df.r p = df.ctx['r 4]
df.node = df.ctx['node']

df.pod = df.ctx['pod']

df.pid = px.upid_to_pid(df.upid)

Remove some columns.
df = df.drop(['upid', 'trace_role', 'content_type', 'minor_version'])

Restrict number of results.
df = df.head(num_head)

return df

Building a Protocol Tracer

Where to Trace the Data?

Many options in the software stack: Tracing Options

Application

Protocol library uprobes\

We preferred tracing as close to HTTP Library
the application layer as possible.

|
.

J

Approaches Compared

protocol library uprobes syscall kprobes libpcap/XDP
Tracing overhead Low Low Low
Scalability & Stability Uprobes per library, High High

Probe targets may change

Parsing effort

None

Protocol parsing

Packet processing &
protocol parsing

SSL tracing

Cleartext available

Data encrypted

Data encrypted

1)

We chose to use syscall kprobes on functions such as send() & recv().

Rationale: close to the application layer, but stable API.

Performance Overhead

Study: Deploy probes on an HTTP server.
- X-axis: the amount of work performed by the per request.

Take-away: kprobe overhead < 2% overhead as long as server is not trivial.

(]
£
o

7]

©
o]

)

7]
£

©

(@]

©

(]

()]

©

e

(o=

Q

(&)

| -

Q

o
©

(0]
N
©

e

—~

o
=2

400 600

Work per request

Framework and Requirements

The Pixie data collector (Stirling) is written in C++

- Uses both BCC and BPFTrace for eBPF
- The protocol tracer uses BCC for the greater degree of control.

Requirements

- Need to support older kernels: we don't control the target ecosystem.
- Minimum kernel version supported: 4.14

Restrictions

- 4096 instruction limit :(
- No ringbuf
- Really want to use libbpf + CO-RE..but we can't

Architecture

Target Application
(being monitored)

.rPixie Data Collector

1 (Stirling)

Send relevant data to

user-space for

Conn Trackers
[pid, fd, timestamp]

tracker tracker

tracker

parsing and storage

Linux

Trigger on

BPF
Probes

networking related
syscalls

e ———

Stores

metadata for each
{pid, fd}.

Architecture

1 - Setup probes on network related syscalls.

Target Application
(being monitored)

A S A Y
r{HptH = T Mo Hl h

.rPixie Data Collector

1 (Stirling)

Send relevant data to

user-space for

Conn Trackers
[pid, fd, timestamp]

tracker tracker]

tracker \

parsing and storage

Linux

Trigger on

BPF
Probes

networking related
syscalls

e ———

Stores

metadata for each
{pid, fd}.

Architecture

2 - Record connection metadata in BPF maps.

Target Application
(being monitored)

| | y \
,—{connectHacceptH send H recv H

.rPixie Data Collector

1 (Stirling)

Send relevant data to

user-space for

Conn Trackers
[pid, fd, timestamp]

tracker tracker]

tracker

parsing and storage

Linux

Trigger on

BPF
Probes

networking related
syscalls

e ———

Stores

metadata for each

Architecture

3 - Infer protocol with basic rule-based classification as a simple filter.
Transfer connection information and data through two perf buffers.

.rPixie Data Collector

1 (Stirling)

Conn Trackers
o [pid, fd, timestamp]
Target Application

(being monitored)
tracker tracker tracker

A
a

Send relevant data to
user-space for
parsing and storage

| | y \J Y
,—{connectHacceptH send H recv H H close }—\
. : - - : Stores
: : : : >
[rigger on Probes metadata for each
Linux netwirking related {pid, fd}.
syscails

e ———

Architecture

4 - Track connections in user-space with ConnTrackers.
Parse ConnTracker data into structured messages.

Target Application
(being monitored)

| | y \J Y
,—{connectHacceptH send H recv H H close }—\

.rPixie Data Collector

1 (Stirling)

Conn Trackers
[pid, fd, timestamp]

tracker

tracker]

tracker \

Send relevant data to

user-space for

parsing and storage

Linux

Trigger on

BPF
Probes

networking related
syscalls

e ———

X

Stores

metadata for each
{pid, fd}.

So, it all just works...right?

The general approach of tracing syscalls has some benefits
- Avoided the complexity of the network layer.
- Easy correlation of events to PID

But the approach is not without its challenges, including:
- Dealing with the variety of syscalls.
- Finding the remote endpoint address.
- Implementing protocol inference in eBPF.
- Dealing with stateful protocols (HTTP/2) and encrypted traffic (TLS).

N .

\

Challenges of Tracing Syscalls

Tracing syscalls is a double-edged sword.
- Benefit: The stable API makes our probes portable across kernel versions.
- Con: Over the years, many ways of doing the same thing have evolved.

- We have to account for all of them.

The protocol tracer probes a total of 17 Linux syscalls.

N

List of Syscalls

Connection Recv variants Write variants Special purpose
management
connect read write sock_alloc
accept readv writev sock_sendmsg
accept4 recv send sock_recvmsg
close recvfrom sendto

recvmsg sendmsg

recvmmsg sendmmsg

sendfile

Challenges of Tracing Syscalls: Examples

Example

Problem

Our Solution

read & write syscalls are used
for both file I/0O and sockets.

When we trace these syscalls, we
end up with more than network
traffic.

Trace sock_sendmsg &
sock_recvmsg to select only the
socket traffic.

accept may be called with a
NULL addr argument.

When NULL, the remote endpoint
address is not directly accessible.

Trace internal sock_alloc calls
to figure out missing address.

Variants like sendmsg &
recvmsg have multiple data
chunks.

BPF doesn’t support loops.

Unrolled loop over a bounded
number of chunks (45). Lose
data beyond that.

Challenges of Tracing Mid-Stream

As an observability tool, we may not see the entire connection stream.

Pixie deploys
9 > l 5 >
(%) ~\ Ay Ay
@C’Q @ @Q’(\ & @Q’(\ & @é\

Problem for long-lived streams: we won't know the remote endpoint.
- So we resolve endpoints from user-space.

Remote
address

FD

Iproc/<pid>/fd — inode —» NetLink —>

eBPF-Side Protocol Inference

To filter data transfers to user-space, we apply

pl’O’[OCO| inference in BPF Likelihood that our inference eventually
' identifies the right protocol
- Just a filter: False positives are okay. Confusion Matrix

- Example for HTTP: et

mysql(1579)

static __inline enum MessageType infer_http_message(const char*
buf, size_t count) { pgsql(59)

dns(18550)
if (buf[0] == 'H' && buf[l] == 'T' && buf[2] == 'T' && buf[3] == P {
return kResponse; mongo(432)

}

http(17831)

kafka(11)

Pluggable Protocol Parsers

Architecture consists of pluggable protocol parsers

Protocol Parsers

Data From eBPF

SRR
HTTP
events
)
MySQL
events

Postgres
events

DNS
events

Stored in
memory for
user queries
via PxL

Supported Protocols List

HTTP
MySQL
Postgres
Redis
Cassandra
Kafka
NATS
DNS
gRPC*

*gRPC is traced with dedicated uprobes

,\V\/e are working on making it easier to contribute protocols

-\ Mcluding a contribution guide
\

\
|

When kprobes are not enough:
Tracing gRPC and TLS

Tracing HTTP/2 and gRPC: The problem

The kprobe-based approach has been mostly effective, but...
- HTTP/2 includes a stateful compression scheme called HPACK.
- HPACK uses a dynamic dictionary of common header values.

- We can't decode the headers if we don't have the dictionary.

‘ Dictionary \

A
\

HPACK The observed value on the "wire" is an index into the dictionary.

\ ‘path /api/GetUser ’ encoder > 87 The dictionary is required to decode the value.

Tracing HTTP/2 and gRPC: What to do?

Unfortunately, we can't count on knowing the dictionary.
- We may deploy after the HTTP/2 connection was made
- We may lose data through the perf buffer.

Options we considered:

1) Tryto learn the dictionary.
o Tried it. Too complex..

2) Recover the dictionary state via uprobes.
o No easy place to probe.

\3)Trace the gRPC library directly via uprobes. P e oo

o Not easy, but our only viable option.

Tracing gRPC: Our Approach

Use uprobes to capture data before
it's compressed. Application

............... Protocol library uprobes
HTTP Library

We have implemented uprobes for
Golang's gRPC library; other libraries
are planned.

e
-4—

SSL

LinuxAPI P Sysca” kprobes
Socket Layer

TCP Layer

IPLayer S libpcap probes

Network Driver S R XDP probes

https:/igithub.com/pixie-io/pixie/blob/main/src/stirling/source connectors/socket _tracer/bcc_bpf/go _http2_trace.c @

https://github.com/pixie-io/pixie/blob/main/src/stirling/source_connectors/socket_tracer/bcc_bpf/go_http2_trace.c

Our gRPC Experience: Takeaways

Any protocol that is stateful is hard to decode.
- Compression on individual messages is okay; problem is with
dependent state.
- Tools like tWireshark face the same issue: can't decode headers
without the state.

The uprobe based approach is hindered by the scalability problem.

- We need uprobes for each gRPC library for full tracing.
- Must take care to place uprobes on functions that appear stable

across versions.
-\ Need debug symbols to make it more robust

\

Making Uprobes Robust

Read DWARF information to find offsets; pass them to the BPF program.

@ Read DWARF
information i
Golang GRPC library o Fixie I(Déattiﬁir(i;llector

golang.org/x/net/http2.(*Framer).WriteDataPadded

Triggers

@Tracer uses @ Populate offsets per PID

supplied offsets

BPF .
@Deploy uprobe p Read—p| Symaddr |<——Write
rogram Map

v

// Probe for the golang.org/x/net/http2 library's frame writer.

//

// Function signature:

// func (f *Framer) WriteDataPadded(streamID uint32, endStream bool, data, pad []byte) error
//

// Symbol:

// golang.org/x/net/http2. (*Framer) .WriteDataPadded
int probe http2 framer write datastruct pt regs* ctx)
uint32 t tgid = bpf get current pid tgid() >>32;
struct go http2 symaddrs t* symaddrs = http2 symaddrs map.lookup (&tgid)
if (symaddrs == NULL) {
return 0;

// Required argument offsets.

REQUIRE SYMADDR(symaddrs—->http2 WriteDataPadded f offset 0);
REQUIRE SYMADDR(symaddrs—->http2 WriteDataPadded streamID offsef 0);
REQUIRE SYMADDR(symaddrs->http2 WriteDataPadded endStream offset 0);
REQUIRE SYMADDR(symaddrs—->http2 WriteDataPadded data offsef 0);

/] e
// Extract arguments (on stack)
s
const char* sp = (const char*)ctx->sp;

void* framer ptr;
bpf probe read(&framer ptry sizeof(void*), sp + symaddrs->http2 WriteDataPadded f offset)

SSL Tracing

Tracing SSL traffic with kprobes doesn't work either.
- Data is already encrypted

Application without TLS Application with TLS

Uprobes come to the rescue

- Trace the SSL library instead

TLS Library
(e.g. openssl.so)

BCC has a similar tool: sslsniff | “

\\

httog;//qithub.com/pixie—io/pixie/blob/main/src/stirlinq/source connectors/socket_tracer/bcc_bpf/openssl_trace.c @

https://github.com/pixie-io/pixie/blob/main/src/stirling/source_connectors/socket_tracer/bcc_bpf/openssl_trace.c

Uprobes on TLS Libraries

There is a simple mapping of kprobes to uprobes

Kprobe function

OpenSSL API function

Golang cryptoltls library

read/recv

SSL_read

crypto/tls.(*Conn).Read

write/send

SSL_write

crypto/tls.(*Conn).Write

Uprobes on SSL API push to same perf buffer as syscall probes

- No changes to user-space code ;)

SSL Tracing Observations

While uprobes have the scalability problem, it's not so bad with SSL

- The number of popular SSL libraries is small.

By tracing a public API, we get good probe stability across versions.

One interesting exception: node,js Requires
additional
- Uses OpenSSL in an asynchronous manner (via libuv). node#;
- Makes it hard to correlate the traced data with a FD. jfﬁg'bgs (

=

\

summary

Pixie Is a Kubernetes observability platform.
- Protocol tracer provides instant visibility on K8s clusters.
- No user instrumentation: powered by eBPF.

Pixie is now an open-source CNCF sandbox project

- httpos//aithub.com/pixie-io/pixie
- Contributions are welcomel!

N

https://github.com/pixie-io/pixie

O) MKIE

Thank you!..Questions?

