
Protocol Tracing with eBPF
September 23, 2021
Omid Azizi, Yaxiong Zhao, Ryan Cheng, John P Stevenson, Zain Asgar

A CNCF sandbox project

About Me

Twitter: @oazizi
Principal engineer at New Relic.
Founding engineer at Pixie Labs (@pixie_run)

Hi, I’m Omid

file:///tmp/PXL_20210923_0447545
11.jpg

Introduction
In 2019, we set out to build a no-instrumentation observability platform.

- Our Vision: Help developers understand and debug their K8s apps.

First goal: Trace application network messages.
- HTTP, then other protocols.

We had two key requirements:
(1) No instrumentation: No code modifications, no redeployments.
(2) Low overhead: Always active.

Overview

No instrumentation + low overhead ⇨ eBPF.

General approach:

- Capture data in kernel-space with eBPF.
- Process data in user-space (protocol parsing).
- Store data into tables for querying by user.

Focus
of this
talk

Traced
HTTP
Traffic

Automatic
Service

Maps

PxL scripts:
A pandas based
query language

Building a Protocol Tracer

Where to Trace the Data?

Many options in the software stack:

We preferred tracing as close to
the application layer as possible.

Tracing Options

Approaches Compared

We chose to use syscall kprobes on functions such as send() & recv().

- Rationale: close to the application layer, but stable API.

protocol library uprobes syscall kprobes libpcap/XDP

Tracing overhead Low Low Low

Scalability & Stability Uprobes per library,
Probe targets may change

High High

Parsing effort None Protocol parsing Packet processing &
protocol parsing

SSL tracing Cleartext available Data encrypted Data encrypted

Performance Overhead
Study: Deploy probes on an HTTP server.

- X-axis: the amount of work performed by the per request.

Take-away: kprobe overhead < 2% overhead as long as server is not trivial.

Production servers are typically in
this range, since they do real work.

Framework and Requirements
The Pixie data collector (Stirling) is written in C++

- Uses both BCC and BPFTrace for eBPF
- The protocol tracer uses BCC for the greater degree of control.

Requirements

- Need to support older kernels: we don’t control the target ecosystem.
- Minimum kernel version supported: 4.14

Restrictions

- 4096 instruction limit :(
- No ringbuf :(
- Really want to use libbpf + CO-RE..but we can’t :(

Architecture

Architecture
1 - Setup probes on network related syscalls.

Architecture
2 - Record connection metadata in BPF maps.

Architecture
3 - Infer protocol with basic rule-based classification as a simple filter.
 Transfer connection information and data through two perf buffers.

Architecture
4 - Track connections in user-space with ConnTrackers.
 Parse ConnTracker data into structured messages.

So, it all just works...right?

The general approach of tracing syscalls has some benefits
- Avoided the complexity of the network layer.
- Easy correlation of events to PID

But the approach is not without its challenges, including:
- Dealing with the variety of syscalls.
- Finding the remote endpoint address.
- Implementing protocol inference in eBPF.
- Dealing with stateful protocols (HTTP/2) and encrypted traffic (TLS).

Challenges of Tracing Syscalls
Tracing syscalls is a double-edged sword.

- Benefit: The stable API makes our probes portable across kernel versions.

- Con: Over the years, many ways of doing the same thing have evolved.

- We have to account for all of them.

The protocol tracer probes a total of 17 Linux syscalls.

List of Syscalls

Connection
management

Recv variants Write variants Special purpose

connect
accept
accept4
close

read
readv
recv
recvfrom
recvmsg
recvmmsg

write
writev
send
sendto
sendmsg
sendmmsg
sendfile

sock_alloc
sock_sendmsg
sock_recvmsg

Challenges of Tracing Syscalls: Examples

Example Problem Our Solution

read & write syscalls are used
for both file I/O and sockets.

When we trace these syscalls, we
end up with more than network
traffic.

Trace sock_sendmsg &
sock_recvmsg to select only the
socket traffic.

accept may be called with a
NULL addr argument.

When NULL, the remote endpoint
address is not directly accessible.

Trace internal sock_alloc calls
to figure out missing address.

Variants like sendmsg &
recvmsg have multiple data
chunks.

BPF doesn’t support loops. Unrolled loop over a bounded
number of chunks (45). Lose
data beyond that.

Challenges of Tracing Mid-Stream

As an observability tool, we may not see the entire connection stream.

accept

re
cv

se
nd

re
cv

se
nd

re
cv

se
nd

close...

Pixie deploys

Problem for long-lived streams: we won’t know the remote endpoint.
- So we resolve endpoints from user-space.

Time

FD /proc/<pid>/fd NetLinkinode Remote
address

eBPF-Side Protocol Inference

To filter data transfers to user-space, we apply
protocol inference in BPF.

- Just a filter: False positives are okay.

- Example for HTTP:

UPDATEstatic __inline enum MessageType infer_http_message(const char*
buf, size_t count) {
 ...

 if (buf[0] == 'H' && buf[1] == 'T' && buf[2] == 'T' && buf[3] == 'P') {
return kResponse;

 }
 ...

Likelihood that our inference eventually
identifies the right protocol

Pluggable Protocol Parsers

Architecture consists of pluggable protocol parsers

We are working on making it easier to contribute protocols

- Including a contribution guide

Supported Protocols List

HTTP
MySQL
Postgres
Redis
Cassandra
Kafka
NATS
DNS
gRPC*
*gRPC is traced with dedicated uprobes

When kprobes are not enough:
Tracing gRPC and TLS

Tracing HTTP/2 and gRPC: The problem

The kprobe-based approach has been mostly effective, but...

- HTTP/2 includes a stateful compression scheme called HPACK.

- HPACK uses a dynamic dictionary of common header values.

- We can’t decode the headers if we don’t have the dictionary.

Tracing HTTP/2 and gRPC: What to do?

Unfortunately, we can’t count on knowing the dictionary.
- We may deploy after the HTTP/2 connection was made
- We may lose data through the perf buffer.

Options we considered:
1) Try to learn the dictionary.

○ Tried it. Too complex..

2) Recover the dictionary state via uprobes.
○ No easy place to probe.

3) Trace the gRPC library directly via uprobes.
○ Not easy, but our only viable option.

Final solution

Tracing gRPC: Our Approach

Use uprobes to capture data before
it’s compressed.

We have implemented uprobes for
Golang’s gRPC library; other libraries
are planned.

https://github.com/pixie-io/pixie/blob/main/src/stirling/source_connectors/socket_tracer/bcc_bpf/go_http2_trace.c

https://github.com/pixie-io/pixie/blob/main/src/stirling/source_connectors/socket_tracer/bcc_bpf/go_http2_trace.c

Our gRPC Experience: Takeaways

Any protocol that is stateful is hard to decode.
- Compression on individual messages is okay; problem is with

dependent state.
- Tools like tWireshark face the same issue: can’t decode headers

without the state.

The uprobe based approach is hindered by the scalability problem.
- We need uprobes for each gRPC library for full tracing.
- Must take care to place uprobes on functions that appear stable

across versions.
- Need debug symbols to make it more robust

Making Uprobes Robust

Read DWARF information to find offsets; pass them to the BPF program.

// Probe for the golang.org/x/net/http2 library's frame writer.
//
// Function signature:
// func (f *Framer) WriteDataPadded(streamID uint32, endStream bool, data, pad []byte) error
//
// Symbol:
// golang.org/x/net/http2.(*Framer).WriteDataPadded
int probe_http2_framer_write_data(struct pt_regs* ctx) {
 uint32_t tgid = bpf_get_current_pid_tgid() >> 32;
 struct go_http2_symaddrs_t* symaddrs = http2_symaddrs_map.lookup(&tgid);
 if (symaddrs == NULL) {
 return 0;
 }

 // Required argument offsets.
 REQUIRE_SYMADDR(symaddrs->http2_WriteDataPadded_f_offset, 0);
 REQUIRE_SYMADDR(symaddrs->http2_WriteDataPadded_streamID_offset, 0);
 REQUIRE_SYMADDR(symaddrs->http2_WriteDataPadded_endStream_offset, 0);
 REQUIRE_SYMADDR(symaddrs->http2_WriteDataPadded_data_offset, 0);

 // ---
 // Extract arguments (on stack)
 // ---

 const char* sp = (const char*)ctx->sp;

 void* framer_ptr;
 bpf_probe_read(&framer_ptr, sizeof(void*), sp + symaddrs->http2_WriteDataPadded_f_offset);

SSL Tracing

Tracing SSL traffic with kprobes doesn’t work either.

- Data is already encrypted

Uprobes come to the rescue

- Trace the SSL library instead

BCC has a similar tool: sslsniff

https://github.com/pixie-io/pixie/blob/main/src/stirling/source_connectors/socket_tracer/bcc_bpf/openssl_trace.c

https://github.com/pixie-io/pixie/blob/main/src/stirling/source_connectors/socket_tracer/bcc_bpf/openssl_trace.c

Uprobes on TLS Libraries

There is a simple mapping of kprobes to uprobes

Uprobes on SSL API push to same perf buffer as syscall probes
- No changes to user-space code :)

Kprobe function OpenSSL API function Golang crypto/tls library

read/recv SSL_read crypto/tls.(*Conn).Read

write/send SSL_write crypto/tls.(*Conn).Write

SSL Tracing Observations

While uprobes have the scalability problem, it’s not so bad with SSL

- The number of popular SSL libraries is small.

- By tracing a public API, we get good probe stability across versions.

One interesting exception: node.js

- Uses OpenSSL in an asynchronous manner (via libuv).
- Makes it hard to correlate the traced data with a FD.

Requires
additional
node.js
specific
uprobes :(

Summary

Pixie is a Kubernetes observability platform.
- Protocol tracer provides instant visibility on K8s clusters.
- No user instrumentation: powered by eBPF.

Pixie is now an open-source CNCF sandbox project
- https://github.com/pixie-io/pixie
- Contributions are welcome!

https://github.com/pixie-io/pixie

Thank you!...Questions?

