בואוק

Protocol Tracing with eBPF

September 23, 2021 Omid Azizi, Yaxiong Zhao, Ryan Cheng, John P Stevenson, Zain Asgar

A CNCF sandbox project

file:///tmp/PXL_20210923_04475 11.jpg

About Me

Hi, I'm Omid

Twitter: @oazizi Principal engineer at New Relic. Founding engineer at Pixie Labs (@pixie_run)

ה

Introduction

In 2019, we set out to build a no-instrumentation observability platform.

- Our Vision: Help developers understand and debug their K8s apps.

First goal: Trace application network messages.

- HTTP, then other protocols.

user user-db with front-end catalog catalog-db

We had two key requirements:

(1) **No instrumentation**: No code modifications, no redeployments.

(2) Low overhead: Always active.

Overview

No instrumentation + low overhead ⇒ **eBPF**.

General approach:

- Capture data in kernel-space with eBPF.
- Process data in user-space (protocol parsing).
- Store data into tables for querying by user.

Focus of this

talk

$\leftarrow \rightarrow$	Câ	0 8	https://work.withpixie.ai/	live/clusters/gke_p	-pixies_us-west1-	a_oazizi?max_num_records=	=1000&script=Scratch Pad	&start_ 🏠	⊵ 👱 🔮	? 💿 😑 🖆
≡ i	אוק <mark>פו</mark> אוק	Cluster: gke:oazi	zi -						* <mark> > r</mark>	
₿	script: Scr	atch Pad 🔻 🛛 ma	ax_num_records:1000 ▼				Tracec	I	start_t	ime:-5m ▼
ns	Table			Traffic						
	≡	TIME_ ^	: POD	REMOTE_ADDR	REQ_ME	REQ_PATH	EREQ_BODY ∧ E	RESP_HEADERS	RESP	RESP_BODY
	9/22/2	2021, 3:58:18 PM	px-sock-shop/front-end	10.169.137.128	GET	/login		{ Connection: keep	200	Cookie is s
	9/22/2	2021, 3:58:18 PM	px-sock-shop/carts-85bf	10.169.137.125	GET	/carts/57a98d98e4b006		{ Connection: close	202	<removed:< th=""></removed:<>
	9/22/2	2021, 3:58:18 PM	px-sock-shop/payment	10.169.137.130	POST	/paymentAuth	{ address: { id:	{ Content-Length: 51	200	{ authori
	9/22/2	2021, 3:58:18 PM	px-sock-shop/shipping-7	10.169.137.130	POST	/shipping	{ id: d1fd39fa-87	{ Content-Type: app	201	{ id: d1f
	9/22/2	2021, 3:58:18 PM	px-sock-shop/carts-85bf	10.169.137.125	DELETE	/carts/57a98d98e4b006		{ Connection: close	202	<removed:< th=""></removed:<>
	9/22/2	2021, 3:58:18 PM	px-sock-shop/carts-85bf	10.169.137.125	POST	/carts/57a98d98e4b006	{ itemId: 808a2de	{ Connection: close	201	{ id: 614
	9/22/2	2021, 3:58:18 PM	px-sock-shop/orders-7c	10.169.137.125	POST	/orders	{ customer: http:	{ Connection: close	201	{ "id" : "614l
	9/22/2	2021, 3:58:18 PM	px-sock-shop/shipping-7	10.169.137.130	POST	/shipping	{ id: 2bbfa8d4-97	{ Content-Type: app	201	{ id: 2bb
	9/22/2	2021, 3:58:18 PM	px-sock-shop/orders-7c	10.169.137.125	POST	/orders	{ customer: http:	{ Connection: close	201	{ "id" : "614l
₩ E	9/22/2	2021, 3:58:18 PM	px-sock-shop/carts-85bf	10.169.137.125	POST	/carts/57a98d98e4b006	{ itemId: 03fef6a	{ Connection: close	201	{ id: 614
• ।	9/22/2	2021, 3:58:18 PM	px-sock-shop/carts-85bf	10.169.137.125	POST	/carts/57a98d98e4b006	{ itemId: 808a2de	{ Connection: close	201	{ id: 614
9	9/22/2	2021, 3:58:18 PM		35.191.10.207	GET	/healthz		{ Content-Length: 1	200	{ lastUpd

Showing 68 - 81 / 1000 records

Table

R.

i ?

≡ FROM_ENTITY ^	E TO_ENTITY ~	BYTES_SENT	BYTES_RECV	BYTES_TOTAL ^
px-sock-shop/carts-5fc45568c4-bvwbs	carts-db.px-sock-shop.svc.cluster.local	40.1 KB/s	63.4 KB/s	103.5 KB/s
px-sock-shop/carts-5fc45568c4-bvwbs	kube-dns.kube-system.svc.cluster.local	38.3 B/s	91.7 B/s	130 B/s
px-sock-shop/orders-77c57c89dc-p47gw	shipping.px-sock-shop.svc.cluster.local	3.8 KB/s	2.3 KB/s	6.1 KB/s

					PxL scrip	ts:					
≡	Eואוק	Cluster: gke:c	bazizi -		A pandas bas	ed			C		(
⊗	script:px	/http_data 👻	max_num_r	ecords: 100	["] query langua	ge		PxL Script Vis Spec			>
ns								1 # Copyright 2018- The Pixie Authors. 2 #			Alexandra and Alexandra Alexandra Alexandra
	Table				\sim			 4 # Licensed under the Apache License, Version 2.8 (the License); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 			
	≡ TI ^	: R ^	R ^	М	REQ_HEADERS	: R ^	: R ^ :	6 # 7 # <u>http://www.apache.org/licenses/LICENSE-2.6</u>	<u>0</u>		
	8/4/20.		57302		{ Connection: Keep-alive, Host: 10.	GET	/healthz				
	8/4/20.	10.169	42382		<pre>{ :authority: productcatalogservice</pre>	POST	/hipste		on an "AS IS" BASIS, either express or implied.		
	8/4/20.	10.169	48054		{ Accept: */*, Accept-Encoding: gzi	GET	/produ				
	8/4/20.	10.169	46970		{ Connection: close, host: user }	GET	/custo				
	8/4/20.	10.169	46958		{ Connection: close, host: user }	GET	/custo	17 ''' HTTP Data Tracer 18			
	8/4/20.	10.169	46960		{ Connection: close, host: user }	GET	/custo	19 This script traces all HTTP/HTTP2 data on the c.			
	8/4/20.	10.169	58324		{ Connection: close, host: carts }	GET	/carts/	21 import px			
	8/4/20.	10.169	43626	2	<pre>{ :authority: productcatalogservice</pre>	POST	/hipste	23 24 def http_data(start_time: str, num_head: int):			
	8/4/20.	10.169	58338	1	{ Connection: close, host: carts }	GET	/carts/	25 of = px.DataFrame(table= nttp_events , start 26	t_time=start_time)		
	8/4/20.	10.169	46966		{ Connection: close, host: user }	GET	/custo	27 df.namespace = df.ctx[namespace] 28 df.nod = df.ctx['node'] 29 df.nod = df.ctx['node']			
	8/4/20.	10.169	43626	2	<pre>{ :authority: productcatalogservice</pre>	POST	/hipste	30 df.pid = px.upid_to_pid(df.upid)			
	8/4/20.	10.169	35052		{ Connection: close, host: catalogu	GET	/catalo	32 # Remove some columns. 33 df = df.dron(['upid', 'trace role', 'content	t type', 'minor version'l)		
								34 35 # Restrict number of results.			
								36 df = df.head(num_head) 37			

(ī

Building a Protocol Tracer

Where to Trace the Data?

Many options in the software stack:

We preferred tracing as close to the application layer as possible.

Approaches Compared

	protocol library uprobes	syscall kprobes	libpcap/XDP
Tracing overhead	Low	Low	Low
Scalability & Stability	Uprobes per library, Probe targets may change	High	High
Parsing effort	None	Protocol parsing	Packet processing & protocol parsing
SSL tracing	Cleartext available	Data encrypted	Data encrypted

We chose to use syscall kprobes on functions such as send() & recv().

Rationale: close to the application layer, but stable API.

Performance Overhead

Production servers are typically in this range, since they do real work.

Study: Deploy probes on an HTTP server.

- X-axis: the amount of work performed by the per request.

Take-away: kprobe overhead < 2% overhead as long as server is not trivial.

Framework and Requirements

The Pixie data collector (Stirling) is written in C++

- Uses both BCC and BPFTrace for eBPF
- The protocol tracer uses BCC for the greater degree of control.

Requirements

- Need to support older kernels: we don't control the target ecosystem.
- Minimum kernel version supported: 4.14

Restrictions

- 4096 instruction limit :(
- No ringbuf :(
- Really want to use libbpf + CO-RE..but we can't :(

1 - Setup probes on network related syscalls.

2 - Record connection metadata in BPF maps.

1

3 - Infer protocol with basic rule-based classification as a simple filter. Transfer connection information and data through two perf buffers.

4 - Track connections in user-space with ConnTrackers. Parse ConnTracker data into structured messages.

So, it all just works...right?

The general approach of tracing syscalls has some benefits

- Avoided the complexity of the network layer.
- Easy correlation of events to PID

But the approach is not without its challenges, including:

- Dealing with the variety of syscalls.
- Finding the remote endpoint address.
- Implementing protocol inference in eBPF.
- Dealing with stateful protocols (HTTP/2) and encrypted traffic (TLS).

Challenges of Tracing Syscalls

Tracing syscalls is a double-edged sword.

- Benefit: The stable API makes our probes portable across kernel versions.
- Con: Over the years, many ways of doing the same thing have evolved.
 - We have to account for all of them.

The protocol tracer probes a total of 17 Linux syscalls.

List of Syscalls

Connection management	Recv variants	Write variants	Special purpose
connect accept accept4 close	read readv recv recvfrom recvmsg recvmmsg	write writev send sendto sendmsg sendmsg sendfile	sock_alloc sock_sendmsg sock_recvmsg

Challenges of Tracing Syscalls: Examples

Example	Problem	Our Solution
read & write syscalls are used for both file I/O and sockets.	When we trace these syscalls, we end up with more than network traffic.	Trace sock_sendmsg & sock_recvmsg to select only the socket traffic.
accept may be called with a NULL addr argument.	When NULL, the remote endpoint address is not directly accessible.	Trace internal sock_alloc calls to figure out missing address.
Variants like sendmsg & recvmsg have multiple data chunks.	BPF doesn't support loops.	Unrolled loop over a bounded number of chunks (45). Lose data beyond that.

Challenges of Tracing Mid-Stream

As an observability tool, we may not see the entire connection stream.

Problem for long-lived streams: we won't know the remote endpoint.

- So we resolve endpoints from user-space.

eBPF-Side Protocol Inference

To filter data transfers to user-space, we apply protocol inference in BPF.

- Just a filter: False positives are okay.
- Example for HTTP:

static __inline enum MessageType infer_http_message(const char*
buf, size_t count) {
 ...
 if (buf[0] == 'H' && buf[1] == 'T' && buf[2] == 'T' && buf[3] == 'P') {
 return kResponse;
 }
 ...

Likelihood that our inference eventually identifies the right protocol

Pluggable Protocol Parsers

Architecture consists of pluggable protocol parsers

*gRPC is traced with dedicated uprobes

We are working on making it easier to contribute protocols

Including a contribution guide

When kprobes are not enough: Tracing gRPC and TLS

Tracing HTTP/2 and gRPC: The problem

The kprobe-based approach has been mostly effective, but...

- HTTP/2 includes a *stateful* compression scheme called HPACK.
- HPACK uses a dynamic dictionary of common header values.
- We can't decode the headers if we don't have the dictionary.

Tracing HTTP/2 and gRPC: What to do?

Unfortunately, we can't count on knowing the dictionary.

- We may deploy after the HTTP/2 connection was made
- We may lose data through the perf buffer.

Options we considered:

3)

- 1) Try to learn the dictionary.
 - Tried it. Too complex..
- 2) Recover the dictionary state via uprobes.
 - No easy place to probe.
 - Trace the gRPC library directly via uprobes.
 - Not easy, but our only viable option.

Tracing gRPC: Our Approach

Use uprobes to capture data before it's compressed.

We have implemented uprobes for Golang's gRPC library; other libraries are planned.

Our gRPC Experience: Takeaways

Any protocol that is stateful is hard to decode.

- Compression on individual messages is okay; problem is with dependent state.
- Tools like tWireshark face the same issue: can't decode headers without the state.

The uprobe based approach is hindered by the scalability problem.

- We need uprobes for each gRPC library for full tracing.
- Must take care to place uprobes on functions that appear stable across versions.
- Need debug symbols to make it more robust

Making Uprobes Robust

Read DWARF information to find offsets; pass them to the BPF program.


```
int probe http2 framer write data(struct pt reqs* ctx) {
uint32 t tgid = bpf get current pid tgid() >>32;
struct qo http2 symaddrs t* symaddrs = http2 symaddrs map.lookup(&tgid)
if (symaddrs == NULL) {
REQUIRE SYMADDR(symaddrs->http2 WriteDataPadded f offset 0);
REQUIRE SYMADDR(symaddrs->http2 WriteDataPadded streamID offset 0);
REQUIRE SYMADDR(symaddrs->http2 WriteDataPadded endStream offset 0);
REQUIRE SYMADDR(symaddrs->http2 WriteDataPadded data offset 0);
void* framer ptr;
```

SSL Tracing

Tracing SSL traffic with kprobes doesn't work either.

- Data is already encrypted

Uprobes come to the rescue

- Trace the SSL library instead

BCC has a similar tool: sslsniff

Uprobes on TLS Libraries

There is a simple mapping of kprobes to uprobes

Kprobe function	OpenSSL API function	Golang crypto/tls library
read/recv	SSL_read	crypto/tls.(*Conn).Read
write/send	SSL_write	crypto/tls.(*Conn).Write

Uprobes on SSL API push to same perf buffer as syscall probes

- No changes to user-space code :)

SSL Tracing Observations

While uprobes have the scalability problem, it's not so bad with SSL

- The number of popular SSL libraries is small.
- By tracing a public API, we get good probe stability across versions.

One interesting exception: node.js

- Uses OpenSSL in an asynchronous manner (via libuv).
- Makes it hard to correlate the traced data with a FD.

Requires additional node.js specific uprobes :(

Summary

Pixie is a Kubernetes observability platform.

- Protocol tracer provides instant visibility on K8s clusters.
- No user instrumentation: powered by eBPF.

Pixie is now an open-source CNCF sandbox project

- https://github.com/pixie-io/pixie
- Contributions are welcome!

בו×וק

Thank you!...Questions?